首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   659篇
  免费   54篇
  713篇
  2023年   3篇
  2022年   2篇
  2021年   14篇
  2020年   5篇
  2019年   11篇
  2018年   16篇
  2017年   11篇
  2016年   24篇
  2015年   30篇
  2014年   33篇
  2013年   47篇
  2012年   52篇
  2011年   66篇
  2010年   39篇
  2009年   36篇
  2008年   42篇
  2007年   40篇
  2006年   27篇
  2005年   28篇
  2004年   25篇
  2003年   22篇
  2002年   30篇
  2001年   9篇
  2000年   11篇
  1999年   9篇
  1998年   13篇
  1997年   11篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1993年   5篇
  1992年   8篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   5篇
  1986年   2篇
  1985年   7篇
  1984年   2篇
  1978年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有713条查询结果,搜索用时 15 毫秒
71.
Two diastereomeric series of hybrid γ,γ-peptides derived from conveniently protected derivatives of (1R,2S)- and (1S,2R)-3-amino-2,2-dimethylcyclobutane-1-carboxylic acid and cis-4-amino-l-proline joined in alternation have efficiently been prepared through convergent synthesis. High-resolution NMR experiments show that these compounds present defined conformations in solution affording very compact structures as the result of intra and inter residue hydrogen-bonded ring formation. (R,S)-cyclobutane containing peptides adopt more twisted conformations than (S,R) diastereomers. In addition, all these γ-peptides have high tendency to aggregation providing vesicles of nanometric size, which were stable when allowed to stand for several days, as verified by transmission electron microscopy.  相似文献   
72.
In all eukaryotes, C/D small nucleolar ribonucleoproteins (C/D snoRNPs) are essential for methylation and processing of ribosomal RNAs. They consist of a box C/D small nucleolar RNA (C/D snoRNA) associated with four highly conserved nucleolar proteins. Recent data in HeLa cells and yeast have revealed that assembly of these snoRNPs is directed by NUFIP protein and other auxiliary factors. Nevertheless, the precise function and biological importance of NUFIP and the other assembly factors remains unknown. In plants, few studies have focused on RNA methylation and snoRNP biogenesis. Here, we identify and characterise the AtNUFIP gene that directs assembly of C/D snoRNP. To elucidate the function of AtNUFIP in planta, we characterized atnufip mutants. These mutants are viable but have severe developmental phenotypes. Northern blot analysis of snoRNA accumulation in atnufip mutants revealed a specific degradation of C/D snoRNAs and this situation is correlated with a reduction in rRNA methylation. Remarkably, the impact of AtNUFIP depends on the structure of snoRNA genes: it is essential for the accumulation of those C/D snoRNAs encoded by polycistronic genes, but not by monocistronic or tsnoRNA genes. We propose that AtNUFIP controls the kinetics of C/D snoRNP assembly on nascent precursors to overcome snoRNA degradation of aberrant RNPs. Finally, we show that AtNUFIP has broader RNP targets, controlling the accumulation of scaRNAs that direct methylation of spliceosomal snRNA in Cajal bodies.  相似文献   
73.
The synthesis of diverse functionalized ureas in a semi-parallel fashion is described, as well as their β12-adrenergic activities and the corresponding structure-activity relationship (SAR). We have focused on lipophilicity and duration of action, and we have discovered a strong correlation in this series of molecules. A quantitative structure-activity relationship (QSAR) analysis will be presented that quantifies this relationship.  相似文献   
74.
Cornely R  Rentero C  Enrich C  Grewal T  Gaus K 《IUBMB life》2011,63(11):1009-1017
Annexin A6 (AnxA6) belongs to the conserved annexin protein family--a group of Ca(2+) -dependent membrane binding proteins. It is the largest of all annexin proteins and upon activation, binds to negatively charged phospholipids in the plasma membrane and endosomes. In addition, AnxA6 associates with cholesterol-rich membrane microdomains termed lipid rafts. Membrane cholesterol triggers Ca(2+) -independent translocation of AnxA6 to membranes and AnxA6 levels determine the number of caveolae, a form of specialized rafts at the cell surface. AnxA6 also has an F-actin binding domain and interacts with cytoskeleton components. Taken together, this suggests that AnxA6 has a scaffold function to link membrane microdomains with the organization of the cytoskeleton. Such a link facilitates AnxA6 to participate in plasma membrane repair and it would also impact on receptor signalling at the cell surface, growth factor, and lipoprotein receptor trafficking, Ca(2+) -channel activity and T cell activation. Hence, the regulation of cell surface receptors by AnxA6 may be facilitated by its unique structure that allows recruitment of interaction partners and simultaneously bridging specialized membrane domains with cortical actin surrounding activated receptors.  相似文献   
75.
76.
Post-translational modifications (PTMs) of core histones are important epigenetic determinants that correlate with functional chromatin states. However, despite multiple linker histone H1s PTMs have been identified, little is known about their genomic distribution and contribution to the epigenetic regulation of chromatin. Here, we address this question in Drosophila that encodes a single somatic linker histone, dH1. We previously reported that dH1 is dimethylated at K27 (dH1K27me2). Here, we show that dH1K27me2 is a major PTM of Drosophila heterochromatin. At mitosis, dH1K27me2 accumulates at pericentromeric heterochromatin, while, in interphase, it is also detected at intercalary heterochromatin. ChIPseq experiments show that >98% of dH1K27me2 enriched regions map to heterochromatic repetitive DNA elements, including transposable elements, simple DNA repeats and satellite DNAs. Moreover, expression of a mutated dH1K27A form, which impairs dH1K27me2, alters heterochromatin organization, upregulates expression of heterochromatic transposable elements and results in the accumulation of RNA:DNA hybrids (R-loops) in heterochromatin, without affecting H3K9 methylation and HP1a binding. The pattern of dH1K27me2 is H3K9 methylation independent, as it is equally detected in flies carrying a H3K9R mutation, and is not affected by depletion of Su(var)3–9, HP1a or Su(var)4–20. Altogether these results suggest that dH1K27me2 contributes to heterochromatin organization independently of H3K9 methylation.  相似文献   
77.
Abstract: Tetanus toxin (TeTx) has been recently demonstrated to be a Zn2+-dependent endopeptidase that cleaves synaptobrevin, a protein in part responsible for neurotransmitter release. Nevertheless, certain aspects of TeTx action, for example, the causal relationship between TeTx and protein kinase C (PKC; EC 2.7.1.37) activity cannot be explained by this cleavage alone. In the present study, primary neurons from fetal rat brain, synaptosomes, and whole slices have been used to examine this issue. Low doses of TeTx (≤ 10?8M) caused PKC activity translocation in a manner similar to that produced by 12-O-tetradecanoylphorbol 13-acetate (TPA). TPA (≤ 10?7M) caused sustained PKC activity translocation, whereas TeTx produced translocation followed by relocation, depending on the dose and time of exposure. Immunoidentification with a monoclonal antibody recognizing both α and β isoforms revealed that TeTx induced moderate losses of PKC in the cytosolic fraction, without a comparable increase in the particulate fraction. Although moderate losses of activity were also noticed in the cytosolic fraction, the inconsistency with respect to activity translocation may be explained by translocation of additional PKC isoforms that are not identified by the antibody. Comparable levels of water-soluble inositol phosphate-labeled intermediates were obtained after treatment of cerebral cells and/or cortical brain slices with TeTx. Significant increases of 19 and 114% in the water-soluble myo-[2-3H]inositol-labeled inositol phosphate metabolites were found in cerebral cell culture and brain slices, respectively, after treatment with 10?8M TeTx. TeTx (10?8M) increased to the same degree the water-soluble inositol phosphate levels as did serotonin (10?5M) or carbachol (10?6M). It is suggested that part of the signaling cascade of TeTx consists of a component involving inositol phospholipid hydrolysis, which is associated with PKC activity translocation.  相似文献   
78.
BACKGROUND: Despite the successful retrieval of genomes from past remains, the prospects for human palaeogenomics remain unclear because of the difficulty of distinguishing contaminant from endogenous DNA sequences. Previous sequence data generated on high-throughput sequencing platforms indicate that fragmentation of ancient DNA sequences is a characteristic trait primarily arising due to depurination processes that create abasic sites leading to DNA breaks. METHODOLOGY/PRINCIPALS FINDINGS: To investigate whether this pattern is present in ancient remains from a temperate environment, we have 454-FLX pyrosequenced different samples dated between 5,500 and 49,000 years ago: a bone from an extinct goat (Myotragus balearicus) that was treated with a depurinating agent (bleach), an Iberian lynx bone not subjected to any treatment, a human Neolithic sample from Barcelona (Spain), and a Neandertal sample from the El Sidrón site (Asturias, Spain). The efficiency of retrieval of endogenous sequences is below 1% in all cases. We have used the non-human samples to identify human sequences (0.35 and 1.4%, respectively), that we positively know are contaminants. CONCLUSIONS: We observed that bleach treatment appears to create a depurination-associated fragmentation pattern in resulting contaminant sequences that is indistinguishable from previously described endogenous sequences. Furthermore, the nucleotide composition pattern observed in 5' and 3' ends of contaminant sequences is much more complex than the flat pattern previously described in some Neandertal contaminants. Although much research on samples with known contaminant histories is needed, our results suggest that endogenous and contaminant sequences cannot be distinguished by the fragmentation pattern alone.  相似文献   
79.
The lack of specific markers for stem cells makes the physical identification of this compartment difficult. Hematopoietic stem cells differ in their repopulating and self-renewal potential. Our study shows that multiple classes of human hematopoietic CD34+ greatly differ in telomere length. Flow-cytometry-based fluorescent in situ hybridization and confocal microscopy of CD34+ cells has revealed remarkable telomere length heterogeneity, with a hybridization pattern consistent with different classes of human hematopoietic progenitor cells. These results also point to the existence of a significant clonal heterogeneity among primitive hematopoietic cells and provide the first evidence of a rare fraction of CD34+ cells with large telomeres in humans. Marta García-Escarp and Vanessa Martinez-Muñoz contributed equally to this work.This work was supported by a grant to J.P. from the Spanish Ministry of Science and Technology (SAF2002-02618) and by a grant to V.M.-M. from DakoCytomation.  相似文献   
80.
The GAGA protein of Drosophila is phosphorylated by CK2   总被引:1,自引:0,他引:1  
The GAGA factor of Drosophila is a sequence-specific DNA-binding protein that contributes to multiple processes from the regulation of gene expression to the structural organisation of heterochromatin and chromatin remodelling. GAGA is known to interact with various other proteins (tramtrack, pipsqueak, batman and dSAP18) and protein complexes (PRC1, NURF and FACT). GAGA functions are likely regulated at the level of post-translational modifications. Little is known, however, about its actual pattern of modification. It was proposed that GAGA can be O-glycosylated. Here, we report that GAGA519 isoform is a phosphoprotein that is phosphorylated by CK2 at the region of the DNA-binding domain. Our results indicate that phosphorylation occurs at S388 and, to a lesser extent, at S378. These two residues are located in a region of the DNA-binding domain that makes no direct contact with DNA, being dispensable for sequence-specific recognition. Phosphorylation at these sites does not abolish DNA binding but reduces the affinity of the interaction. These results are discussed in the context of the various functions and interactions that GAGA supports.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号