首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   705篇
  免费   55篇
  760篇
  2023年   3篇
  2022年   2篇
  2021年   13篇
  2020年   4篇
  2019年   12篇
  2018年   18篇
  2017年   13篇
  2016年   24篇
  2015年   32篇
  2014年   33篇
  2013年   44篇
  2012年   50篇
  2011年   64篇
  2010年   38篇
  2009年   33篇
  2008年   45篇
  2007年   40篇
  2006年   28篇
  2005年   30篇
  2004年   26篇
  2003年   23篇
  2002年   30篇
  2001年   9篇
  2000年   12篇
  1999年   7篇
  1998年   12篇
  1997年   9篇
  1996年   7篇
  1995年   1篇
  1994年   6篇
  1993年   5篇
  1992年   14篇
  1991年   9篇
  1990年   13篇
  1989年   2篇
  1988年   8篇
  1987年   10篇
  1986年   6篇
  1985年   12篇
  1984年   6篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有760条查询结果,搜索用时 15 毫秒
131.

Background and Objective

Genes encoding RNA-binding proteins, including FUS and TDP43, play a central role in different neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Recently, a mutation located in the nuclear export signal (NES) of the FUS gene has been reported to cause an autosomal dominant form of familial Essential tremor.

Material and Methods

We sequenced the exons coding the NES domains of five RNA-binding proteins (TARDBP, hnRNPA2B1, hnRNPA1, TAF15 and EWSR1) that have been previously implicated in neurodegeneration in a series of 257 essential tremor (ET) cases and 376 healthy controls. We genotyped 404 additional ET subjects and 510 healthy controls to assess the frequency of the EWSR1 p.R471C substitution.

Results

We identified a rare EWSR1 p.R471C substitution, which is highly conserved, in a single subject with familial ET. The pathogenicity of this substitution remains equivocal, as DNA samples from relatives were not available and the genotyping of 404 additional ET subjects did not reveal any further carriers. No other variants were observed with significant allele frequency differences compared to controls in the NES coding regions.

Conclusions

The present study demonstrates that the NES domains of RNA-binding proteins are highly conserved. The role of the EWSR1 p.R471C substitution needs to be further evaluated in future studies.  相似文献   
132.
Neurodegenerative diseases share a common characteristic, the presence of intracellular or extracellular deposits of protein aggregates in nervous tissues. Amyotrophic Lateral Sclerosis (ALS) is a severe and fatal neurodegenerative disorder, which affects preferentially motoneurons. Changes in the redox state of superoxide dismutase 1 (SOD1) are associated with the onset and development of familial forms of ALS. In human SOD1 (hSOD1), a conserved disulfide bond and two free cysteine residues can engage in anomalous thiol/disulfide exchange resulting in non-native disulfides, a hallmark of ALS that is related to protein misfolding and aggregation. Because of the many competing reaction pathways, traditional bulk techniques fall short at quantifying individual thiol/disulfide exchange reactions. Here, we adapt recently developed single-bond chemistry techniques to study individual disulfide isomerization reactions in hSOD1. Mechanical unfolding of hSOD1 leads to the formation of a polypeptide loop held by the disulfide. This loop behaves as a molecular jump rope that brings reactive Cys-111 close to the disulfide. Using force-clamp spectroscopy, we monitor nucleophilic attack of Cys-111 at either sulfur of the disulfide and determine the selectivity of the reaction. Disease-causing mutations G93A and A4V show greatly altered reactivity patterns, which may contribute to the progression of familial ALS.  相似文献   
133.
Metabolic adaptations to complex perturbations, like the response to pharmacological treatments in multifactorial diseases such as cancer, can be described through measurements of part of the fluxes and concentrations at the systemic level and individual transporter and enzyme activities at the molecular level. In the framework of Metabolic Control Analysis (MCA), ensembles of linear constraints can be built integrating these measurements at both systemic and molecular levels, which are expressed as relative differences or changes produced in the metabolic adaptation. Here, combining MCA with Linear Programming, an efficient computational strategy is developed to infer additional non-measured changes at the molecular level that are required to satisfy these constraints. An application of this strategy is illustrated by using a set of fluxes, concentrations, and differentially expressed genes that characterize the response to cyclin-dependent kinases 4 and 6 inhibition in colon cancer cells. Decreases and increases in transporter and enzyme individual activities required to reprogram the measured changes in fluxes and concentrations are compared with down-regulated and up-regulated metabolic genes to unveil those that are key molecular drivers of the metabolic response.  相似文献   
134.
Resprout and mature plant shoot growth, leaf water status and gas exchange behavior, tissue nutrient content, flowering, and production were studied for co-occurring shallow-rooted (Arbutus unedo L.) and deeprooted (Quercus ilex L.) Mediterranean tree species at the Collserola Natural Park in Northeast Spain Resprouts showed higher growth rates than mature plant shoots. During fall, no differences in eco-physiological performance of leaves were found, but mobilization of carbohydrates from burls strongly stimulated growth of fall resprouts compared to spring resprouts, despite low exposed leaf area of the fall shoots. During summer drought, resprouts exhibited improved water status and carbon fixation compared to mature plant shoots. Shoot growth of Q. ilex was apparently extended due to deep rooting so that initial slower growth during spring and early summer as compared to A. unedo was compensated. Tissue nutrient contents varied only slightly and are postulated to be of minor importance in controlling rate of shoot growth, perhaps due to the relatively fertile soil of the site. Fall flowering appeared to inhibit fall shoot growth in A. unedo, but did not occur in Q. ilex. The results demonstrate that comparative examinations utilizing vegetation elements with differing morphological and physiological adaptations can be used to analyze relatively complex phenomena related to resprouting behavior. The studies provide an important multi-dimensional background framework for further studies of resprouting in the European Mediterranean region.  相似文献   
135.
The response of wheat crops to elevated CO2 (eCO2) was measured and modelled with the Australian Grains Free‐Air CO2 Enrichment experiment, located at Horsham, Australia. Treatments included CO2 by water, N and temperature. The location represents a semi‐arid environment with a seasonal VPD of around 0.5 kPa. Over 3 years, the observed mean biomass at anthesis and grain yield ranged from 4200 to 10 200 kg ha?1 and 1600 to 3900 kg ha?1, respectively, over various sowing times and irrigation regimes. The mean observed response to daytime eCO2 (from 365 to 550 μmol mol?1 CO2) was relatively consistent for biomass at stem elongation and at anthesis and LAI at anthesis and grain yield with 21%, 23%, 21% and 26%, respectively. Seasonal water use was decreased from 320 to 301 mm (P = 0.10) by eCO2, increasing water use efficiency for biomass and yield, 36% and 31%, respectively. The performance of six models (APSIM‐Wheat, APSIM‐Nwheat, CAT‐Wheat, CROPSYST, OLEARY‐CONNOR and SALUS) in simulating crop responses to eCO2 was similar and within or close to the experimental error for accumulated biomass, yield and water use response, despite some variations in early growth and LAI. The primary mechanism of biomass accumulation via radiation use efficiency (RUE) or transpiration efficiency (TE) was not critical to define the overall response to eCO2. However, under irrigation, the effect of late sowing on response to eCO2 to biomass accumulation at DC65 was substantial in the observed data (~40%), but the simulated response was smaller, ranging from 17% to 28%. Simulated response from all six models under no water or nitrogen stress showed similar response to eCO2 under irrigation, but the differences compared to the dryland treatment were small. Further experimental work on the interactive effects of eCO2, water and temperature is required to resolve these model discrepancies.  相似文献   
136.
The EMBL-EBI Complex Portal is a knowledgebase of macromolecular complexes providing persistent stable identifiers. Entries are linked to literature evidence and provide details of complex membership, function, structure and complex-specific Gene Ontology annotations. Data are freely available and downloadable in HUPO-PSI community standards and missing entries can be requested for curation. In collaboration with Saccharomyces Genome Database and UniProt, the yeast complexome, a compendium of all known heteromeric assemblies from the model organism Saccharomyces cerevisiae, was curated. This expansion of knowledge and scope has led to a 50% increase in curated complexes compared to the previously published dataset, CYC2008. The yeast complexome is used as a reference resource for the analysis of complexes from large-scale experiments. Our analysis showed that genes coding for proteins in complexes tend to have more genetic interactions, are co-expressed with more genes, are more multifunctional, localize more often in the nucleus, and are more often involved in nucleic acid-related metabolic processes and processes where large machineries are the predominant functional drivers. A comparison to genetic interactions showed that about 40% of expanded co-complex pairs also have genetic interactions, suggesting strong functional links between complex members.  相似文献   
137.
To know the mechanisms involved in the activation of promutagenic aromatic amines mediated by plants, we used Persea americana S117 system (S117) for the activation of 2-aminofluorene (2-AF) and m-phenylenediamine (m-PDA) in Ames assays. In these assays, the effect of the diphenylene iodonium (DPI), an inhibitor of flavin-containing monooxygenases (FMOs), of the 1-aminobenzotriazole (1-ABT), an inhibitor of cytochromes P450 (cyt-P450s) and of the methimazole, a high-affinity substrate for FMOs, was studied. The efficacy of both inhibitors and of the methimazole was verified to find that they did partially inhibit the mutagenesis of both aromatic amines, activated with rat liver S9. Similarly, both inhibitors and methimazole did produce a significant decrease in 2-AF and m-PDA mutagenesis, when the activation system was S117, indicating that, similar to what occurs in mammalian systems, plant FMOs and cyt-P450s can metabolize aromatic amines to mutagenic product(s). However, the affinity of both FMOs and cyt-P450s of plant for 2-AF and m-PDA was different. Data obtained indicate that the activities of plant FMOs must be the main enzymatic system of m-PDA activation while, in 2-AF activation, plant cyt-P450s have the most relevant activities. In addition, peroxidases of the S117 system must contribute to 2-AF activation and some isoforms of FMOs and/or cyt-P450s of the S117 system, uninhibited by the inhibitors used, must be the responsible for a partial activation of m-PDA.  相似文献   
138.
In most plants, sucrose is the primary product of photosynthesis, the transport form of assimilated carbon, and also one of the main factors determining sweetness in fresh fruits. Traditional methods for sugar quantification (mainly sucrose, glucose and fructose) require obtaining crude plant extracts, which sometimes involve substantial sample manipulation, making the process time-consuming and increasing the risk of sample degradation. Here, we describe and validate a fast method to determine sugar content in intact plant tissue by using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). The HR-MAS NMR method was used for quantifying sucrose, glucose and fructose in mesocarp tissues from melon fruits (Cucumis melo var. reticulatus and Cucumis melo var. cantalupensis). The resulting sugar content varied among individual melons, ranging from 1.4 to 7.3 g of sucrose, 0.4–2.5 g of glucose; and 0.73–2.83 g of fructose (values per 100 g fw). These values were in agreement with those described in the literature for melon fruit tissue, and no significant differences were found when comparing them with those obtained using the traditional, enzymatic procedure, on melon tissue extracts. The HR-MAS NMR method offers a fast (usually <30 min) and sensitive method for sugar quantification in intact plant tissues, it requires a small amount of tissue (typically 50 mg fw) and avoids the interferences and risks associated with obtaining plant extracts. Furthermore, this method might also allow the quantification of additional metabolites detectable in the plant tissue NMR spectrum.  相似文献   
139.
Recent studies have suggested that the colonic H+,K+-ATPase (HKalpha2) can secrete either Na+ or H+ in exchange for K+. If correct, this view would indicate that the transporter could function as either a Na+ or a H+ pump. To investigate this possibility a series of experiments was performed using apical membranes from rat colon which were enriched in colonic H+,K+-ATPase protein. An antibody specific for HKalpha2 was employed to determine whether HKalpha2 functions under physiological conditions as a Na+-dependent or Na+-independent K+-ATPase in this same membrane fraction. K+-ATPase activity was measured as [gamma-32P]ATP hydrolysis. The Na+-dependent K+-ATPase accounted for approximately 80% of overall K+-ATPase activity and was characterized by insensitivity to Sch-28080 but partial sensitivity to ouabain. The Na+-independent K+-ATPase activity was insensitive to both Sch-28080 and ouabain. Both types of K+-ATPase activity substituted NH4+ for K+ in a similar manner. Furthermore, our results demonstrate that when incubated with native distal colon membranes, the blocking antibody inhibited dramatically Na+-dependent K+-ATPase activity. Therefore, these data demonstrate that HKalpha2 can function in native distal colon apical membranes as a Na+-dependent K+-ATPase. Elucidation of the role of the pump as a transporter of Na+ versus H+ or NH4+ versus K+ in vivo will require additional studies.  相似文献   
140.
A flow injection anlytical system based on a gas diffusion membrane module for ammonia and an ammonium flow-through potentiometric detector has been set up for measurement of L-glutamine and ammonium ions in hybridoma cell cultures. The main feature of the system is that the same basic analytical concept and equipment is used in both measurements, the only difference being for the determination of L-glutamine, in which the sample flows through an immobilized glutaminase cartridge. The conditions to enable the performance of both analysis consecutively, avoiding potential interferences by unwanted deamination of other compounds in the samples, have been determined. Finally, the proposed system has been compared with reference analytical methods for batch hybridoma cell culture experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号