首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4047篇
  免费   267篇
  国内免费   2篇
  4316篇
  2023年   20篇
  2022年   54篇
  2021年   109篇
  2020年   80篇
  2019年   88篇
  2018年   118篇
  2017年   117篇
  2016年   162篇
  2015年   216篇
  2014年   231篇
  2013年   290篇
  2012年   369篇
  2011年   325篇
  2010年   202篇
  2009年   173篇
  2008年   240篇
  2007年   235篇
  2006年   196篇
  2005年   185篇
  2004年   161篇
  2003年   176篇
  2002年   155篇
  2001年   38篇
  2000年   24篇
  1999年   29篇
  1998年   38篇
  1997年   26篇
  1996年   25篇
  1995年   22篇
  1994年   21篇
  1993年   24篇
  1992年   15篇
  1991年   20篇
  1990年   19篇
  1989年   9篇
  1988年   7篇
  1987年   5篇
  1986年   9篇
  1985年   14篇
  1984年   9篇
  1983年   13篇
  1982年   6篇
  1981年   5篇
  1980年   9篇
  1979年   3篇
  1977年   5篇
  1975年   3篇
  1973年   2篇
  1963年   2篇
  1961年   2篇
排序方式: 共有4316条查询结果,搜索用时 15 毫秒
291.
292.
Summary The abnormal oocyte phenotype is characterized by instability, as shown by the loss and reappearance of the abo maternal effect under specific genetic conditions. Our previous finding that a correlation exists between the abo phenotype and the presence of a blood transposon in region 32E, led us to perform an extensive genetic and molecular analysis of the most significant aspects of the abo phenotype in different genetic backgrounds. The results of these experiments can be summarized as follows: Complete reversion occurs only when the blood transposon is lost, thus definitively demonstrating that the insertion of the blood transposon in region 32E is the molecular event that causes the pleiotropic abo phenotype. Partial reversion can also occur without loss of the transposon, indicating that different molecular pathways may be involved in the loss of the abo phenotype. Reappearance of the full abo phenotype can occur only in heterozygous lines constructed from partially revertant abo homozygous lines that have not lost the blood transposon.  相似文献   
293.
Inflammation is the common denominator to the postnatal events that overlap with lymphatic vessel growth, or lymphangiogenesis. Undoubtedly, inflammation and accompanying fluid overload are cardinal factors in wound healing, lymphedema, the pathogenesis of some forms of lymphangiomatosis, and solid tumor lymphangiogenesis. The assertion that inflammation actually triggers lymphangiogenesis lies in the evidence set forth below that inflammation is the usual precursor to tissue repair and regeneration. Moreover, the panel of pro-inflammatory and anti-inflammatory molecules that orchestrates the inflammatory response abounds with cytokines and chemokines that foster survival, migration, and proliferation of lymphatic endothelial cells. Finally, both interstitial fluid overload and increased demand for removal of leukocytes can benefit from lymphangiogenesis, although the mechanisms controlling the exit of leukocytes from tissues via the lymphatics are practically unknown. The pertinent question actually is how and why inflammation presents with formation of new lymph vessels in liver fibrosis but not in rheumatoid arthritis. One possible explanation is that organ-specific histological and functional properties of the lymphatic endothelium gauge their response to death, survival, and proliferative factors. Alternatively, the decision to remain quiescent, proliferate or regress resides within the stroma microenvironment.  相似文献   
294.
295.
The enzymatic hydrolysis of polyamide fibres yields amino and carboxylic groups. These groups can be found in solution treatments as polyamide monomers and soluble oligomers. The amino groups can also be found at the surface of the fibres as end group chains. In this paper we report two methods to quantify the formation of these groups as a result of the enzymatic action. Soluble amino groups can be quantified with 2,4,6-trinitrobenzenesulfonic acid (TNBS), which yields a coloured complex which can be determined spectrophotometrically. The amino groups on the fibre surface can be quantified by reaction with a wool reactive dye and determination of colour intensities after a dyeing procedure below the glass transition temperature of polyamide.  相似文献   
296.
Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber (‘time giver’) and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16–20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks.  相似文献   
297.
We provide an integrative interpretation of neuroglial metabolic coupling including the presence of subcellular compartmentation of pyruvate and monocarboxylate recycling through the plasma membrane of both neurons and glial cells. The subcellular compartmentation of pyruvate allows neurons and astrocytes to select between glucose and lactate as alternative substrates, depending on their relative extracellular concentration and the operation of a redox switch. This mechanism is based on the inhibition of glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase by NAD(+) limitation, under sufficiently reduced cytosolic NAD(+)/NADH redox conditions. Lactate and pyruvate recycling through the plasma membrane allows the return to the extracellular medium of cytosolic monocarboxylates enabling their transcellular, reversible, exchange between neurons and astrocytes. Together, intracellular pyruvate compartmentation and monocarboxylate recycling result in an effective transcellular coupling between the cytosolic NAD(+)/NADH redox states of both neurons and glial cells. Following glutamatergic neurotransmission, increased glutamate uptake by the astrocytes is proposed to augment glycolysis and tricarboxylic acid cycle activity, balancing to a reduced cytosolic NAD(+)/NADH in the glia. Reducing equivalents are transferred then to the neuron resulting in a reduced neuronal NAD(+)/NADH redox state. This may eventually switch off neuronal glycolysis, favoring the oxidation of extracellular lactate in the lactate dehydrogenase (LDH) equilibrium and in the neuronal tricarboxylic acid cycles. Finally, pyruvate derived from neuronal lactate oxidation, may return to the extracellular space and to the astrocyte, restoring the basal redox state and beginning a new loop of the lactate/pyruvate transcellular coupling cycle. Transcellular redox coupling operates through the plasma membrane transporters of monocarboxylates, similarly to the intracellular redox shuttles coupling the cytosolic and mitochondrial redox states through the transporters of the inner mitochondrial membrane. Finally, transcellular redox coupling mechanisms may couple glycolytic and oxidative zones in other heterogeneous tissues including muscle and tumors.  相似文献   
298.
299.
Recent studies have shown that an endogenous lipoperoxidation product, 9-hydroxystearic acid (9-HSA), acts in colon carcinoma cells (HT29) as a growth inhibitor by inducing p21(WAF1) in an immediate-early, p53-independent manner and that p21(WAF1) is required for 9-HSA-mediated growth arrest in HT29 cells. It is conceivable, therefore, to hypothesize that the cytostatic effect induced by this agent is at least partially associated with a molecular mechanism that involves histone deacetylase 1 (HDAC1) inhibition, as demonstrated for sodium butyrate and other specific inhibitors, such as trichostatin A and hydroxamic acids. Here, we show that, after administration, 9-HSA causes an accumulation of hyperacetylated histones and strongly inhibits the activity of HDAC1. The interaction of 9-HSA with the catalytic site of the enzyme has been highlighted by computational modeling of the human HDAC1, using its homolog from the hyperthermophilic Aquifex aeolicus as a template. Consistent with the experimental data, we find that 9-HSA can bind to the active site of the protein, showing that the inhibition of the enzyme can be explained at the molecular level by the ligand-protein interaction.  相似文献   
300.
Extreme hydro‐meteorological events such as droughts are becoming more frequent, intense, and persistent. This is particularly true in the south central USA, where rapidly growing urban areas are running out of water and human‐engineered water storage and management are leading to broad‐scale changes in flow regimes. The Kiamichi River in southeastern Oklahoma, USA, has high fish and freshwater mussel biodiversity. However, water from this rural river is desired by multiple urban areas and other entities. Freshwater mussels are large, long‐lived filter feeders that provide important ecosystem services. We ask how observed changes in mussel biomass and community composition resulting from drought‐induced changes in flow regimes might lead to changes in river ecosystem services. We sampled mussel communities in this river over a 20‐year period that included two severe droughts. We then used laboratory‐derived physiological rates and river‐wide estimates of species‐specific mussel biomass to estimate three aggregate ecosystem services provided by mussels over this time period: biofiltration, nutrient recycling (nitrogen and phosphorus), and nutrient storage (nitrogen, phosphorus, and carbon). Mussel populations declined over 60%, and declines were directly linked to drought‐induced changes in flow regimes. All ecosystem services declined over time and mirrored biomass losses. Mussel declines were exacerbated by human water management, which has increased the magnitude and frequency of hydrologic drought in downstream reaches of the river. Freshwater mussels are globally imperiled and declining around the world. Summed across multiple streams and rivers, mussel losses similar to those we document here could have considerable consequences for downstream water quality although lost biofiltration and nutrient retention. While we cannot control the frequency and severity of climatological droughts, water releases from reservoirs could be used to augment stream flows and prevent compounded anthropogenic stressors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号