首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   59篇
  国内免费   1篇
  2023年   7篇
  2022年   7篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   10篇
  2015年   22篇
  2014年   20篇
  2013年   22篇
  2012年   42篇
  2011年   33篇
  2010年   18篇
  2009年   16篇
  2008年   28篇
  2007年   25篇
  2006年   12篇
  2005年   21篇
  2004年   15篇
  2003年   22篇
  2002年   19篇
  2001年   21篇
  2000年   18篇
  1999年   13篇
  1998年   5篇
  1997年   13篇
  1995年   10篇
  1994年   6篇
  1992年   8篇
  1991年   8篇
  1990年   10篇
  1989年   4篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   7篇
  1980年   4篇
  1979年   8篇
  1977年   4篇
  1974年   5篇
  1973年   2篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
  1963年   3篇
  1900年   2篇
  1888年   2篇
排序方式: 共有570条查询结果,搜索用时 15 毫秒
91.
Heme proteins represent a diverse class of biomolecules responsible for an extremely diverse array of physiological functions including electron transport, monooxygenation, ligand transport and storage, cellular signaling, respiration, etc. An intriguing aspect of these proteins is that such functional diversity is accomplished using a single type of heme macrocycle based upon iron protoporphyrin IX. The functional diversity originates from a delicate balance of inter-molecular interactions within the protein matrix together with well choreographed dynamics that modulate the heme electronic structure as well as ligand entry/exit pathways from the bulk solvent to the active site. Of particular interest are the dynamics and energetics associated with the entry/exit of ligands as this process plays a significant role in regulating the rates of heme protein activity. Time-resolved photoacoustic calorimetry (PAC) has emerged as a powerful tool through which to probe the underlying energetics associated with small molecule dissociation and release to the bulk solvent in heme proteins on time scales from tens of nanoseconds to several microseconds. In this review, the results of PAC studies on various classes of heme proteins are summarized highlighting how different protein structures affect the thermodynamics of ligand migration. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.  相似文献   
92.
Dimethylsulfide (DMS) is a volatile organosulfur compound which has been implicated in the biogeochemical cycling of sulfur and in climate control. Microbial degradation is a major sink for DMS. DMS metabolism in some bacteria involves its oxidation by a DMS monooxygenase in the first step of the degradation pathway; however, this enzyme has remained uncharacterized until now. We have purified a DMS monooxygenase from Hyphomicrobium sulfonivorans, which was previously isolated from garden soil. The enzyme is a member of the flavin-linked monooxygenases of the luciferase family and is most closely related to nitrilotriacetate monooxygenases. It consists of two subunits: DmoA, a 53-kDa FMNH2-dependent monooxygenase, and DmoB, a 19-kDa NAD(P)H-dependent flavin oxidoreductase. Enzyme kinetics were investigated with a range of substrates and inhibitors. The enzyme had a Km of 17.2 (± 0.48) μM for DMS (kcat = 5.45 s−1) and a Vmax of 1.25 (± 0.01) μmol NADH oxidized min−1 (mg protein−1). It was inhibited by umbelliferone, 8-anilinonaphthalenesulfonate, a range of metal-chelating agents, and Hg2+, Cd2+, and Pb2+ ions. The purified enzyme had no activity with the substrates of related enzymes, including alkanesulfonates, aldehydes, nitrilotriacetate, or dibenzothiophenesulfone. The gene encoding the 53-kDa enzyme subunit has been cloned and matched to the enzyme subunit by mass spectrometry. DMS monooxygenase represents a new class of FMNH2-dependent monooxygenases, based on its specificity for dimethylsulfide and the molecular phylogeny of its predicted amino acid sequence. The gene encoding the large subunit of DMS monooxygenase is colocated with genes encoding putative flavin reductases, homologues of enzymes of inorganic and organic sulfur compound metabolism, and enzymes involved in riboflavin synthesis.Dimethylsulfide (DMS) is a volatile organosulfur compound, important in the biogeochemical cycling of sulfur and global climate regulation (4, 9). Bacterial metabolism of DMS is an important sink of the compound in nature and is thought to account for degradation of over 80% of the DMS produced in the marine environment. Although bacterial pathways of DMS degradation have been studied previously in Hyphomicrobium spp. and in Thiobacillus spp. (12, 36), they remain poorly characterized, and few enzymes of DMS metabolism have been purified (see reference 32). DMS monooxygenase was first reported from an assay of NADH-dependent oxygen uptake in the presence of DMS by cell extracts of Hyphomicrobium S (12), an activity also demonstrated in cell extracts of other Hyphomicrobium, Thiobacillus, and Arthrobacter isolates (6, 7, 34), with specific activities around 30 nmol NADH oxidized min−1 mg protein−1. The enzyme has not previously been purified or characterized.The aims of this study were to purify and characterize the DMS monooxygenase enzyme from a member of the genus Hyphomicrobium. Since Hyphomicrobium S is no longer available, studies were undertaken using the type strain of H. sulfonivorans. The strain was originally isolated from garden soil and grows on DMS, as well as the related compounds dimethyl sulfoxide (DMSO) and dimethylsulfone (DMSO2). During growth on DMSO2, H. sulfonivorans first reduces DMSO2 to DMSO by a dimethylsulfone reductase, and subsequently a DMSO reductase converts DMSO to DMS, which is further oxidized to methanethiol and formaldehyde by a DMS monooxygenase. Oxidation of methanethiol to formaldehyde by methanethiol oxidase yields another mole of formaldehyde, which is either assimilated into biomass or oxidized to carbon dioxide to provide reducing equivalents (Fig. (Fig.1).1). DMS monooxygenase activity is present in the soluble protein fraction during growth on these compounds (6, 7). A 53-kDa polypeptide was previously observed in organisms grown on DMS, DMSO, and DMSO2 (6, 7), but its significance in the metabolism of these compounds was unknown.Open in a separate windowFIG. 1.Pathway and enzymes of dimethylsulfone degradation in Hyphomicrobium sulfonivorans S1. Reduction of dimethylsulfone [DMSO2; (CH3)2SO2] to dimethyl sulfoxide [DMSO; (CH3)2SO] and further reduction of DMSO to dimethylsulfide provides the substrate for DMS monooxygenase. Formaldehyde is either assimilated (via the serine cycle) or oxidized to CO2 providing reducing equivalents. Sulfide is oxidized to sulfate; see reference 7 for further details.  相似文献   
93.
Methylomonas methanica MC09 is a mesophilic, halotolerant, aerobic, methanotrophic member of the Gammaproteobacteria, isolated from coastal seawater. Here we present the complete genome sequence of this strain, the first available from an aerobic marine methanotroph.  相似文献   
94.
95.
Adaptive evolution frequently occurs in episodic bursts, localized to a few sites in a gene, and to a small number of lineages in a phylogenetic tree. A popular class of "branch-site" evolutionary models provides a statistical framework to search for evidence of such episodic selection. For computational tractability, current branch-site models unrealistically assume that all branches in the tree can be partitioned a priori into two rigid classes--"foreground" branches that are allowed to undergo diversifying selective bursts and "background" branches that are negatively selected or neutral. We demonstrate that this assumption leads to unacceptably high rates of false positives or false negatives when the evolutionary process along background branches strongly deviates from modeling assumptions. To address this problem, we extend Felsenstein's pruning algorithm to allow efficient likelihood computations for models in which variation over branches (and not just sites) is described in the random effects likelihood framework. This enables us to model the process at every branch-site combination as a mixture of three Markov substitution models--our model treats the selective class of every branch at a particular site as an unobserved state that is chosen independently of that at any other branch. When benchmarked on a previously published set of simulated sequences, our method consistently matched or outperformed existing branch-site tests in terms of power and error rates. Using three empirical data sets, previously analyzed for episodic selection, we discuss how modeling assumptions can influence inference in practical situations.  相似文献   
96.
Cope's gray treefrog, Hyla chrysoscelis, is a freeze-tolerant anuran that accumulates cryoprotective glycerol during cold acclimation. H. chrysoscelis erythrocytes express the aquaglyceroporin HC-3, which facilitates transmembrane glycerol and water movement. Aquaglyceroporins have no pharmacological inhibitors, and no genetic knockout tools currently exist for H. chrysoscelis. A phosphorodiamidate morpholino oligo (PMO)-mediated expression knockdown approach was therefore pursued to provide a model for testing the role of HC-3. We describe a novel procedure optimized for specific, efficient knockdown of HC-3 expression in amphibian erythrocyte suspensions cultured at nonmammalian physiological temperatures using Endo-Porter. Our protocol includes three critical components: pre-incubation at 37°C, two rounds of Endo-Porter and HC-3 PMO administration at ~23°C, and continuous shaking at 190 rpm. This combination of steps resulted in 94% reduction in HC-3 protein expression (Western blot), substantial decrease in HC-3 expression in >65% of erythrocytes, and no detectable expression in an additional 30% of cells (immunocytochemistry).  相似文献   
97.
98.
Lameness is common in commercially reared broiler chickens but relationships between lameness and pain (and thus bird welfare) have proved complex, partly because lameness is often partially confounded with factors such as bodyweight, sex and pathology. Thermal nociceptive threshold (TNT) testing explores the neural processing of noxious stimuli, and so can contribute to our understanding of pain. Using an acute model of experimentally induced articular pain, we recently demonstrated that TNT was reduced in lame broiler chickens, and was subsequently attenuated by administration of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). This study extended these findings to a large sample of commercial broilers. It examined factors affecting thermal threshold (Part 1) and the effect of an NSAID drug (meloxicam, 5 mg/kg) and of an opioid (butorphanol; 4 mg/kg) (Part 2). Spontaneously lame and matched non-lame birds (n = 167) from commercial farms were exposed to ramped thermal stimulations via a probe attached to the lateral aspect of the tarsometatarsus. Baseline skin temperature and temperature at which a behavioural avoidance response occurred (threshold) were recorded. In Part 1 bird characteristics influencing threshold were modelled; In Part 2 the effect of subcutaneous administration of meloxicam or butorphanol was investigated. Unexpectedly, after accounting for other influences, lameness increased threshold significantly (Part 1). In Part 2, meloxicam affected threshold differentially: it increased further in lame birds and decreased in non-lame birds. No effect of butorphanol was detected. Baseline skin temperature was also consistently a significant predictor of threshold. Overall, lameness significantly influenced threshold after other bird characteristics were taken into account. This, and a differential effect of meloxicam on lame birds, suggests that nociceptive processing may be altered in lame birds, though mechanisms for this require further investigation.  相似文献   
99.
During spring-summer 2009, several observational studies from Canada showed increased risk of medically-attended, laboratory-confirmed A(H1N1)pdm09 illness among prior recipients of 2008–09 trivalent inactivated influenza vaccine (TIV). Explanatory hypotheses included direct and indirect vaccine effects. In a randomized placebo-controlled ferret study, we tested whether prior receipt of 2008–09 TIV may have directly influenced A(H1N1)pdm09 illness. Thirty-two ferrets (16/group) received 0.5 mL intra-muscular injections of the Canadian-manufactured, commercially-available, non-adjuvanted, split 2008–09 Fluviral or PBS placebo on days 0 and 28. On day 49 all animals were challenged (Ch0) with A(H1N1)pdm09. Four ferrets per group were randomly selected for sacrifice at day 5 post-challenge (Ch+5) and the rest followed until Ch+14. Sera were tested for antibody to vaccine antigens and A(H1N1)pdm09 by hemagglutination inhibition (HI), microneutralization (MN), nucleoprotein-based ELISA and HA1-based microarray assays. Clinical characteristics and nasal virus titers were recorded pre-challenge then post-challenge until sacrifice when lung virus titers, cytokines and inflammatory scores were determined. Baseline characteristics were similar between the two groups of influenza-naïve animals. Antibody rise to vaccine antigens was evident by ELISA and HA1-based microarray but not by HI or MN assays; virus challenge raised antibody to A(H1N1)pdm09 by all assays in both groups. Beginning at Ch+2, vaccinated animals experienced greater loss of appetite and weight than placebo animals, reaching the greatest between-group difference in weight loss relative to baseline at Ch+5 (7.4% vs. 5.2%; p = 0.01). At Ch+5 vaccinated animals had higher lung virus titers (log-mean 4.96 vs. 4.23pfu/mL, respectively; p = 0.01), lung inflammatory scores (5.8 vs. 2.1, respectively; p = 0.051) and cytokine levels (p>0.05). At Ch+14, both groups had recovered. Findings in influenza-naïve, systematically-infected ferrets may not replicate the human experience. While they cannot be considered conclusive to explain human observations, these ferret findings are consistent with direct, adverse effect of prior 2008–09 TIV receipt on A(H1N1)pdm09 illness. As such, they warrant further in-depth investigation and search for possible mechanistic explanations.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号