首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   861篇
  免费   87篇
  948篇
  2023年   2篇
  2022年   9篇
  2021年   18篇
  2020年   10篇
  2019年   10篇
  2018年   20篇
  2017年   10篇
  2016年   30篇
  2015年   34篇
  2014年   51篇
  2013年   59篇
  2012年   73篇
  2011年   74篇
  2010年   46篇
  2009年   60篇
  2008年   70篇
  2007年   61篇
  2006年   52篇
  2005年   60篇
  2004年   68篇
  2003年   51篇
  2002年   42篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   7篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有948条查询结果,搜索用时 15 毫秒
71.
Degradation of elastin leads to the production of elastin-derived peptides (EDP), which exhibit several biological effects, such as cell proliferation or protease secretion. Binding of EDP on the elastin receptor complex (ERC) triggers lactosylceramide (LacCer) production and ERK1/2 activation following ERC Neu-1 subunit activation. The ability for ERC to transduce signals is lost during aging, but the mechanism involved is still unknown. In this study, we characterized an in vitro model of aging by subculturing human dermal fibroblasts. This model was used to understand the loss of EDP biological activities during aging. Our results show that ERC uncoupling does not rely on Neu-1 or PPCA mRNA or protein level changes. Furthermore, we observe that the membrane targeting of these subunits is not affected with aging. However, we evidence that Neu-1 activity and LacCer production are altered. Basal Neu-1 catalytic activity is strongly increased in aged cells. Consequently, EDP fail to promote Neu-1 catalytic activity and LacCer production in these cells. In conclusion, we propose, for the first time, an explanation for ERC uncoupling based on the age-related alterations of Neu-1 activity and LacCer production that may explain the loss of EDP-mediated effects occurring during aging.  相似文献   
72.
73.
Biological invasions are a threat to the maintenance of ecological processes, including pollination. Plant-flower visitor networks are traditionally used as a surrogated for pollination at the community level, despite they do not represent the pollination process, which takes place at the stigma of plants where pollen grains are deposited. Here we investigated whether the invasion of the alien plant Impatiens glandulifera (Balsaminaceae) affects pollen transfer at the community level. We asked whether more alien pollen is deposited on the stigmas of plants on invaded sites, whether deposition is affected by stigma type (dry, semidry and wet) and whether the invasion of I. glandulifera changes the structure of the resulting pollen transfer networks. We sampled stigmas of plants on 10 sites invaded by I. glandulifera (hereafter, balsam) and 10 non-invaded control sites. All 20 networks had interactions with balsam pollen, although significantly more balsam pollen was found on plants with dry stigmas in invaded areas. Balsam pollen deposition was restricted to a small subset of plant species, which is surprising because pollinators are known to carry high loads of balsam pollen. Balsam invasion did not affect the loading of native pollen, nor did it affect pollen transfer network properties; networks were modular and poorly nested, both of which are likely to be related to the specificity of pollen transfer interactions. Our results indicate that pollination networks become more specialized when moving from the flower visitation to the level of pollen transfer networks. Therefore, caution is needed when inferring pollination from patterns of insect visitation or insect pollen loads as the relationship between these and pollen deposition is not straightforward.  相似文献   
74.
The atomic structure of OmpX, the smallest member of the bacterial outer membrane protein family, has been previously established by X-ray crystallography and NMR spectroscopy. In apparent conflict with electrophysiological studies, the lumen of its transmembrane β-barrel appears too tightly packed with amino acid side chains to let any solute flow through. In the present study, high-resolution solution NMR spectra were obtained of OmpX kept water-soluble by either amphipol A8-35 or the detergent dihexanoylphosphatidylcholine. Hydrogen/deuterium exchange measurements performed after prolonged equilibration show that, whatever the surfactant used, some of the amide protons of the membrane-spanning region exchange much more readily than others, which likely reflects the dynamics of the barrel.  相似文献   
75.
Hemizygous TNFΔARE/+ mice are a murine model for chronic inflammation. We utilized these animals to study iron-kinetics and corresponding protein expression in an iron-deficient and iron-adequate setting. 59Fe-absorption was determined in ligated duodenal loops in vivo. Whole body distribution of i.v. injected 59Fe was analysed, and the organ specific expression of ferroportin, transferrin receptor-1, hepcidin and duodenal DMT-1 was quantified by real-time PCR and Western blotting.Duodenal 59Fe-lumen-to-body transport was not affected by the genotype. Duodenal 59Fe-retention was increased in TNFΔARE/+ mice, suggesting higher 59Fe-losses with defoliated enterocytes. Iron-deficiency increased duodenal 59Fe-lumen-to-body transport, and higher duodenal 59Fe-tissue retention went along with higher duodenal DMT-1, ferroportin, and liver hepcidin expression. TNFΔARE/+ mice significantly increase their 59Fe-content in inflamed joints and ilea, and correspondingly reduce splenic 59Fe-content. Leukocyte infiltrations in the joints suggest a substantial shift of iron-loaded RES cells to inflamed tissues as the underlying mechanism. This finding was paralleled by increased non-haem iron content in joints and reduced haemoglobin and haematocrit concentrations in TNFΔARE/+ mice.In conclusion, erythropoiesis in inflamed TNFΔARE/+ mice could be iron-limited due to losses with exfoliated iron-loaded enterocytes and/or to increased iron-retention in RES cells that shift from the spleen to inflamed tissues.  相似文献   
76.

Background

Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH). Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP) fed-batch process.

Results

The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2 Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g L-1), growth-inhibiting ethanol concentration (87 ± 3 g L-1) and volumetric ethanol productivity (2.1 ± 0.15 g l-1 h-1) measured in wild-type remained virtually unchanged in the engineered strains.

Conclusions

This work demonstrates the power of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Under the conditions used in this study (VHEP fed-batch), the two strains with "fine-tuned" GPD1 expression in a gpd2 Δ background showed slightly better ethanol yield improvement than previously achieved with the single deletion strains gpd1 Δ or gpd2 Δ. Although glycerol reduction is known to be even higher in a gpd1 Δ gpd2 Δ double deletion strain, our strains could much better cope with process stress as reflected by better growth and viability.  相似文献   
77.

Introduction  

Rheumatoid arthritis (RA) is characterized by bone and cartilage invasion by fibroblast-like synoviocytes (FLSs). Adrenomedullin, a peptide with anabolic and antiapoptotic properties, is secreted by rheumatoid FLSs. Adrenomedullin also increases the expression of adhesion molecules in endothelial cells and keratinocytes. Here, we investigated whether adrenomedullin mediated FLS adhesion to extracellular matrix (ECM) proteins.  相似文献   
78.
Peptide microarrays are useful tools for the characterization of humoral responses against peptide antigens. The study of post-translational modifications requires the printing of appropriately modified peptides, whose synthesis can be time-consuming and expensive. We describe here a method named "chips from chips", which allows probing the presence of antibodies directed toward modified peptide antigens starting from unmodified peptide microarrays. The chip from chip concept is based on the modification of peptide microspots by simple chemical reactions. The starting peptide chip (parent chip) is covered by the reagent solution, thereby allowing the modification of specific residues to occur, resulting in the production of a modified peptide chip (daughter chip). Both parent and daughter chips can then be used for interaction studies. The method is illustrated using reductive methylation for converting lysines into dimethyllysines. The rate of methylation was studied using specific antibodies and fluorescence detection, or surface-assisted laser desorption ionization mass spectrometry. This later technique showed unambiguously the efficient methylation of the peptide probes. The method was then used to study the humoral response against the Mycobacterium tuberculosis heparin-binding hemagglutinin, a methylated surface-associated virulence factor and powerful diagnostic and protective antigen.  相似文献   
79.
80.

Premise

Oceanic islands offer the opportunity to understand evolutionary processes underlying rapid diversification. Along with geographic isolation and ecological shifts, a growing body of genomic evidence has suggested that hybridization can play an important role in island evolution. Here we use genotyping-by-sequencing (GBS) to understand the roles of hybridization, ecology, and geographic isolation in the radiation of Canary Island Descurainia (Brassicaceae).

Methods

We carried out GBS for multiple individuals of all Canary Island species and two outgroups. Phylogenetic analyses of the GBS data were performed using both supermatrix and gene tree approaches and hybridization events were examined using D-statistics and Approximate Bayesian Computation. Climatic data were analyzed to examine the relationship between ecology and diversification.

Results

Analysis of the supermatrix data set resulted in a fully resolved phylogeny. Species networks suggest a hybridization event has occurred for D. gilva, with these results being supported by Approximate Bayesian Computation analysis. Strong phylogenetic signals for temperature and precipitation indicate one major ecological shift within Canary Island Descurainia.

Conclusions

Inter-island dispersal played a significant role in the diversification of Descurainia, with evidence of only one major shift in climate preferences. Despite weak reproductive barriers and the occurrence of hybrids, hybridization appears to have played only a limited role in the diversification of the group with a single instance detected. The results highlight the need to use phylogenetic network approaches that can simultaneously accommodate incomplete lineage sorting and gene flow when studying groups prone to hybridization; patterns that might otherwise be obscured in species trees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号