首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   872篇
  免费   89篇
  2023年   2篇
  2022年   9篇
  2021年   18篇
  2020年   10篇
  2019年   10篇
  2018年   20篇
  2017年   10篇
  2016年   30篇
  2015年   34篇
  2014年   51篇
  2013年   59篇
  2012年   73篇
  2011年   74篇
  2010年   46篇
  2009年   60篇
  2008年   70篇
  2007年   61篇
  2006年   52篇
  2005年   60篇
  2004年   68篇
  2003年   51篇
  2002年   42篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   7篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   3篇
排序方式: 共有961条查询结果,搜索用时 203 毫秒
61.

Background

Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH). Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP) fed-batch process.

Results

The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2 Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g L-1), growth-inhibiting ethanol concentration (87 ± 3 g L-1) and volumetric ethanol productivity (2.1 ± 0.15 g l-1 h-1) measured in wild-type remained virtually unchanged in the engineered strains.

Conclusions

This work demonstrates the power of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Under the conditions used in this study (VHEP fed-batch), the two strains with "fine-tuned" GPD1 expression in a gpd2 Δ background showed slightly better ethanol yield improvement than previously achieved with the single deletion strains gpd1 Δ or gpd2 Δ. Although glycerol reduction is known to be even higher in a gpd1 Δ gpd2 Δ double deletion strain, our strains could much better cope with process stress as reflected by better growth and viability.  相似文献   
62.

Introduction  

The aim of this study was to determine whether mycophenolate mofetil (MMF) pharmacokinetics (PK) under combined MMF and prednisone remission-maintenance therapy can predict systemic lupus erythematosus (SLE) clinical flares.  相似文献   
63.

Introduction  

Rheumatoid arthritis (RA) is characterized by bone and cartilage invasion by fibroblast-like synoviocytes (FLSs). Adrenomedullin, a peptide with anabolic and antiapoptotic properties, is secreted by rheumatoid FLSs. Adrenomedullin also increases the expression of adhesion molecules in endothelial cells and keratinocytes. Here, we investigated whether adrenomedullin mediated FLS adhesion to extracellular matrix (ECM) proteins.  相似文献   
64.
Peptide microarrays are useful tools for the characterization of humoral responses against peptide antigens. The study of post-translational modifications requires the printing of appropriately modified peptides, whose synthesis can be time-consuming and expensive. We describe here a method named "chips from chips", which allows probing the presence of antibodies directed toward modified peptide antigens starting from unmodified peptide microarrays. The chip from chip concept is based on the modification of peptide microspots by simple chemical reactions. The starting peptide chip (parent chip) is covered by the reagent solution, thereby allowing the modification of specific residues to occur, resulting in the production of a modified peptide chip (daughter chip). Both parent and daughter chips can then be used for interaction studies. The method is illustrated using reductive methylation for converting lysines into dimethyllysines. The rate of methylation was studied using specific antibodies and fluorescence detection, or surface-assisted laser desorption ionization mass spectrometry. This later technique showed unambiguously the efficient methylation of the peptide probes. The method was then used to study the humoral response against the Mycobacterium tuberculosis heparin-binding hemagglutinin, a methylated surface-associated virulence factor and powerful diagnostic and protective antigen.  相似文献   
65.
In addition to the well-defined contribution of the liver, adipose tissue has been recognized as an important source of angiotensinogen (AGT). The purpose of this study was to define the angiotensin II (ANG II) receptors involved in regulation of adipose AGT and the relationship of this control to systemic AGT and/or angiotensin peptide concentrations. In LDL receptor-deficient (LDLR(-/-)) male mice, adipose mRNA abundance of AGT was 68% of that in liver, and adipose mRNA abundance of the angiotensin type 1a (AT(1a)) receptor (AT(1a)R) was 38% of that in liver, whereas mRNA abundance of the angiotensin type 2 (AT(2)) receptor (AT(2)R) was 57% greater in adipose tissue than in liver. AGT and angiotensin peptide concentrations were decreased in plasma of AT(1a)R-deficient (AT(1a)R(-/-)) mice and were paralleled by reductions in AGT expression in liver. In contrast, adipose AGT mRNA abundance was unaltered in AT(1a)R(-/-) mice. AT(2)R(-/-) mice exhibited elevated plasma angiotensin peptide concentrations and marked elevations in adipose AGT and AT(1a)R mRNA abundance. Increases in adipose AGT mRNA abundance in AT(2)R(-/-) mice were abolished by losartan. In contrast, liver AGT and AT(1a)R mRNA abundance were unaltered in AT(2)R(-/-) mice. Infusion of ANG II for 28 days into LDLR(-/-) mice markedly increased adipose AGT and AT(1a)R mRNA but did not alter liver AGT and AT(1a)R mRNA. These results demonstrate that differential mRNA abundance of AT(1a)/AT(2) receptors in adipose tissue vs. liver contributes to tissue-specific ANG II-mediated regulation of AGT. Chronic infusion of ANG II robustly stimulated AT(1a)R and AGT mRNA abundance in adipose tissue, suggesting that adipose tissue serves as a primary contributor to the activated systemic renin-angiotensin system.  相似文献   
66.
Several strategies are being designed to test the therapeutic potential of Ag-specific regulatory T cells to prevent or treat autoimmune diseases. In this study, we demonstrate that naive CD4+ Foxp3- T cells specific for a naturally expressed autoantigen (H+/K+ ATPase) can be converted to Foxp3+ T regulatory cells (Tregs) when stimulated in presence of TGFbeta. TGFbeta-induced Tregs (iTregs) have all the characteristics of naturally generated regulatory T cells in vitro, and more importantly, are effective at preventing organ-specific autoimmunity in a murine model of autoimmune gastritis. H+/K+ ATPase specific iTregs were able to inhibit the initial priming and proliferation of autoreactive T cells, and appear to do so by acting on H+/K+ ATPase presenting dendritic cells (DC). DC exposed to iTregs in vivo were reduced in their ability to stimulate proliferation and cytokine production by H+/K+ ATPase specific T cells. iTregs specifically reduced CD80 and CD86 expression on the surface of H+/K+ ATPase presenting DC in vitro. These studies reveal the therapeutic potential of Ag specific iTregs to prevent autoimmunity, and provide a mechanism by which this population of regulatory T cells, and perhaps others, mediate their suppressive effects in vivo.  相似文献   
67.
In April 2007, there existed a repertory of 286 trials concerned with acute ischemic stroke on the Stroke Trials Registry ( http://www.strokecenter.org/trials/ ), of which 209 trials were considered as complete (with no evidence of patient benefit unless one considers the much hard fought for and modest results of the tPA studies). Among other questions arising from such failures, one can wonder whether the plethora of pharmacological agents that exhibited neuroprotective properties in pre-clinical studies were selected for clinical trials entirely based upon their experimental efficacy. This mini-review will try to point out some of the weaknesses that could underline the failure of both researchers and clinicians involved in the field of stroke to obtain their ultimate goal – brain protection.  相似文献   
68.
69.
70.
To determine the sequence specificity of dimeric Ss-LrpB, a high resolution contact map was constructed and a saturation mutagenesis conducted on one half of the palindromic consensus box. Premodification binding interference indicates that Ss-LrpB establishes most of its tightest contacts with a single strand of two major groove segments and interacts with the minor groove at the center of the box. The requirement for bending is reflected in the preference for an A+T rich center and confirmed with C.G and C.I substitutions. The saturation mutagenesis indicates that major groove contacts with C.G at position 5 and its symmetrical counterpart are most critical for the specificity and strength of the interaction. Conservation at the remaining positions improved the binding. Hydrogen bonding to the O6 and N7 acceptor atoms of the G5' residue play a major role in complex formation. Unlike many other DNA-binding proteins Ss-LrpB does not establish hydrophobic interactions with the methyls of thymine residues. The binding energies determined from the saturation mutagenesis were used to construct a sequence logo, which pin-points the overwhelming importance of C.G at position 5. The knowledge of the DNA-binding specificity will constitute a precious tool for the search of new physiologically relevant binding sites for Ss-LrpB in the genome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号