首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   23篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   6篇
  2013年   19篇
  2012年   11篇
  2011年   12篇
  2010年   10篇
  2009年   5篇
  2008年   16篇
  2007年   10篇
  2006年   12篇
  2005年   6篇
  2004年   9篇
  2003年   10篇
  2002年   9篇
  2001年   8篇
  1999年   3篇
  1997年   1篇
  1996年   3篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   7篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   6篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   6篇
  1973年   1篇
  1970年   1篇
  1964年   1篇
  1960年   1篇
排序方式: 共有237条查询结果,搜索用时 361 毫秒
71.
High photosynthetic benthic primary production (P) represents a key ecosystem service provided by tropical coral reef systems. However, benthic P budgets of specific ecosystem compartments such as macrophyte-dominated reef lagoons are still scarce. To address this, we quantified individual and lagoon-wide net (Pn) and gross (Pg) primary production by all dominant functional groups of benthic primary producers in a typical macrophyte-dominated Caribbean reef lagoon near Puerto Morelos (Mexico) via measurement of O2 fluxes in incubation experiments. The photosynthetically active 3D lagoon surface area was quantified using conversion factors to allow extrapolation to lagoon-wide P budgets. Findings revealed that lagoon 2D benthic cover was primarily composed of sand-associated microphytobenthos (40%), seagrasses (29%) and macroalgae (27%), while seagrasses dominated the lagoon 3D surface area (84%). Individual Pg was highest for macroalgae and scleractinian corals (87 and 86 mmol O2 m−2 specimen area d−1, respectively), however seagrasses contributed highest (59%) to the lagoon-wide Pg. Macroalgae exhibited highest individual Pn rates, but seagrasses generated the largest fraction (51%) of lagoon-wide Pn. Individual R was highest for scleractinian corals and macroalgae, whereas seagrasses again provided the major lagoon-wide share (68%). These findings characterise the investigated lagoon as a net autotrophic coral reef ecosystem compartment revealing similar P compared to other macrophyte-dominated coastal environments such as seagrass meadows and macroalgae beds. Further, high lagoon-wide P (Pg: 488 and Pn: 181 mmol O2 m−2 lagoon area d−1) and overall Pg:R (1.6) indicate substantial benthic excess production within the Puerto Morelos reef lagoon and suggest the export of newly synthesised organic matter to surrounding ecosystems.  相似文献   
72.

Background

In order to assess the importance of environmental and genetic risk on transition from health to psychotic disorder, a prospective study of individuals at average (n = 462) and high genetic risk (n = 810) was conducted.

Method

A three-year cohort study examined the rate of transition to psychotic disorder. Binary measures indexing environmental exposure (combining urban birth, cannabis use, ethnicity and childhood trauma) and proxy genetic risk (high-risk sibling status) were used to model transition.

Results

The majority of high-risk siblings (68%) and healthy comparison subjects (60%) had been exposed to one or more environmental risks. The risk of transition in siblings (n = 9, 1.1%) was higher than the risk in healthy comparison subjects (n = 2, 0.4%; ORadj  = 2.2,95%CI:5–10.3). All transitions (100%) were associated with environmental exposure, compared to 65% of non-transitions (p = 0.014), with the greatest effects for childhood trauma (ORadj  = 34.4,95%CI:4.4–267.4), cannabis use (OR = 4.1,95%CI:1.1, 15.4), minority ethnic group (OR = 3.8,95%CI:1.2,12.8) and urban birth (OR = 3.7,95%CI:0.9,15.4). The proportion of transitions in the population attributable to environmental and genetic risk ranged from 28% for minority ethnic group, 45% for urban birth, 57% for cannabis use, 86% for childhood trauma, and 50% for high-risk sibling status. Nine out of 11 transitions (82%) were exposed to both genetic and environmental risk, compared to only 43% of non-transitions (p = 0.03).

Conclusion

Environmental risk associated with transition to psychotic disorder is semi-ubiquitous regardless of genetic high risk status. Careful prospective documentation suggests most transitions can be attributed to powerful environmental effects that become detectable when analysed against elevated background genetic risk, indicating gene-environment interaction.  相似文献   
73.
The importance of small RNA (sRNA) regulators has been recognized across all domains of life. In bacteria, sRNAs typically control the expression of virulence and stress response genes via antisense base pairing with mRNA targets. Originally dubbed “non-coding RNAs,” a number of bacterial antisense sRNAs have been found to encode functional proteins. Although very few of these dual-function sRNAs have been characterized, they have been found in both gram-negative and gram-positive organisms. Among the few known examples, the functions and mechanisms of regulation by dual-function sRNAs are variable. Some dual-function sRNAs depend on the RNA chaperone Hfq for base pairing-dependent regulation (riboregulation); this feature appears so far exclusive to gram-negative bacterial sRNAs. Other variations can be found in the spatial organization of the coding region with respect to the riboregulation determinants. How the functions of encoded proteins relate to riboregulation is for the most part not understood. However, in one case it appears that there is physiological redundancy between protein and riboregulation functions. This mini-review focuses on the two best-studied bacterial dual-function sRNAs: RNAIII from Staphylococcus aureus and SgrS from Escherichia coli and includes a discussion of what is known about the structure, function and physiological roles of these sRNAs as well as what questions remain outstanding.  相似文献   
74.
75.
76.
The chromosomal passenger complex (CPC) is a critical regulator of chromosome segregation during mitosis by correcting nonbipolar microtubule-kinetochore interactions. By severing these interactions, the CPC is thought to create unattached kinetochores that are subsequently sensed by the spindle assembly checkpoint (SAC) to prevent premature mitotic exit. We now show that spindle checkpoint function of the CPC and its role in eliminating nonbipolar attachments can be uncoupled. Replacing the chromosomal passenger protein INCENP with a mutant allele that lacks its coiled-coil domain results in an overt defect in a SAC-mediated mitotic arrest in response to taxol treatment, indicating that this domain is critical for CPC function in spindle checkpoint control. Surprisingly, this mutant could restore alignment and cytokinesis during unperturbed cell divisions and was capable of resolving syntelic attachments. Also, Aurora-B kinase was localized and activated normally on centromeres in these cells, ruling out a role for the coiled-coil domain in general Aurora-B activation. Thus, mere microtubule destabilization of nonbipolar attachments by the CPC is insufficient to install a checkpoint-dependent mitotic arrest, and additional, microtubule destabilization-independent CPC signaling toward the spindle assembly checkpoint is required for this arrest, potentially through amplification of the unattached kinetochore-derived checkpoint signal.  相似文献   
77.
78.
79.
80.

Background

As the United States embraces electronic health records (EHRs), improved emergency medical services (EMS) information systems are also a priority; however, little is known about the experiences of EMS agencies as they adopt and implement electronic patient care report (e-PCR) systems. We sought to characterize motivations for adoption of e-PCR systems, challenges associated with adoption and implementation, and emerging implementation strategies.

Methods

We conducted a qualitative study using semi-structured in-depth interviews with EMS agency leaders. Participants were recruited through a web-based survey of National Association of EMS Physicians (NAEMSP) members, a didactic session at the 2010 NAEMSP Annual Meeting, and snowball sampling. Interviews lasted approximately 30 minutes, were recorded and professionally transcribed. Analysis was conducted by a five-person team, employing the constant comparative method to identify recurrent themes.

Results

Twenty-three interviewees represented 20 EMS agencies from the United States and Canada; 14 EMS agencies were currently using e-PCR systems. The primary reason for adoption was the potential for e-PCR systems to support quality assurance efforts. Challenges to e-PCR system adoption included those common to any health information technology project, as well as challenges unique to the prehospital setting, including: fear of increased ambulance run times leading to decreased ambulance availability, difficulty integrating with existing hospital information systems, and unfunded mandates requiring adoption of e-PCR systems. Three recurring strategies emerged to improve e-PCR system adoption and implementation: 1) identify creative funding sources; 2) leverage regional health information organizations; and 3) build internal information technology capacity.

Conclusion

EMS agencies are highly motivated to adopt e-PCR systems to support quality assurance efforts; however, adoption and implementation of e-PCR systems has been challenging for many. Emerging strategies from EMS agencies and others that have successfully implemented EHRs may be useful in expanding e-PCR system use and facilitating this transition for other EMS agencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号