首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   10篇
  2022年   1篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   6篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1996年   2篇
  1991年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
41.
Trichothecenes are mycotoxins produced by Trichoderma, Fusarium, and at least four other genera in the fungal order Hypocreales. Fusarium has a trichothecene biosynthetic gene (TRI) cluster that encodes transport and regulatory proteins as well as most enzymes required for the formation of the mycotoxins. However, little is known about trichothecene biosynthesis in the other genera. Here, we identify and characterize TRI gene orthologues (tri) in Trichoderma arundinaceum and Trichoderma brevicompactum. Our results indicate that both Trichoderma species have a tri cluster that consists of orthologues of seven genes present in the Fusarium TRI cluster. Organization of genes in the cluster is the same in the two Trichoderma species but differs from the organization in Fusarium. Sequence and functional analysis revealed that the gene (tri5) responsible for the first committed step in trichothecene biosynthesis is located outside the cluster in both Trichoderma species rather than inside the cluster as it is in Fusarium. Heterologous expression analysis revealed that two T. arundinaceum cluster genes (tri4 and tri11) differ in function from their Fusarium orthologues. The Tatri4-encoded enzyme catalyzes only three of the four oxygenation reactions catalyzed by the orthologous enzyme in Fusarium. The Tatri11-encoded enzyme catalyzes a completely different reaction (trichothecene C-4 hydroxylation) than the Fusarium orthologue (trichothecene C-15 hydroxylation). The results of this study indicate that although some characteristics of the tri/TRI cluster have been conserved during evolution of Trichoderma and Fusarium, the cluster has undergone marked changes, including gene loss and/or gain, gene rearrangement, and divergence of gene function.  相似文献   
42.

Introduction

The role of popliteal cysts and subgastrocnemius bursitis in knee joint homeostasis is uncertain. The aim of this study is to describe cross-sectional associations between popliteal cysts, subgastrocnemius bursitis, knee symptoms and structural abnormalities in older adults.

Methods

A cross-sectional sample of 900 randomly-selected subjects (mean age 63 years, 48% female) were studied. Knee pain, stiffness and dysfunction were assessed by self-administered Western Ontario McMaster Osteoarthritis Index (WOMAC) questionnaire. Radiographic knee osteophyte and joint space narrowing (JSN) were recorded. Magnetic resonance imaging (MRI) was utilized to assess popliteal cysts, subgastrocnemius bursitis, cartilage defects and bone marrow lesions (BMLs).

Results

Popliteal cysts were present in 11.7% and subgastrocnemius bursitis in 12.7% of subjects. Subgastrocnemius bursitis was more common in those with popliteal cyst (36.2% versus 9.7%, P <0.01). In multivariable analyses, popliteal cysts were significantly associated with increased osteophytes in both medial and lateral tibiofemoral compartments while subgastrocnemius bursitis was associated with increased osteophytes and JSN in the medial tibiofemoral compartment. Both were significantly associated with cartilage defects in all compartments, and with BMLs in the medial tibiofemoral compartment. Furthermore, both popliteal cysts and subgastrocnemius bursitis were significantly associated with increased weight-bearing knee pain but these associations became non-significant after adjustment for cartilage defects and BMLs.

Conclusions

Popliteal cysts and subgastrocnemius bursitis are associated with increased symptoms as well as radiographic and MRI-detected joint structural abnormalities. Longitudinal data will help resolve if they are a consequence or a cause of knee joint abnormalities.  相似文献   
43.
In the present article, we describe the cloning and characterization of the Trichoderma harzianum hmgR gene encoding a hydroxymethylglutaryl CoA reductase (HMGR), a key enzyme in the biosynthesis of terpene compounds. In T. harzianum, partial silencing of the hmgR gene gave rise to transformants with a higher level of sensitivity to lovastatin, a competitive inhibitor of the HMGR enzyme. In addition, these hmgR-silenced transformants produced lower levels of ergosterol than the wild-type strain in a minimal medium containing lovastatin. The silenced transformants showed a decrease in hmgR gene expression (up to a 8.4-fold, after 72h of incubation), together with an increase in the expression of erg7 (up to a 15.8-fold, after 72h of incubation), a gene involved in the biosynthesis of triterpenes. Finally, hmgR-silenced transformants showed a reduction in their antifungal activity against the plant-pathogen fungi Rhizoctonia solani and Fusarium oxysporum.  相似文献   
44.

Background  

The p53 tumor suppressor and its related protein, p73, share a homologous DNA binding domain, and mouse genetics studies have suggested that they have overlapping as well as distinct biological functions. Both p53 and p73 are activated by genotoxic stress to regulate an array of cellular responses. Previous studies have suggested that p53 and p73 independently activate the cellular apoptotic program in response to cytotoxic drugs. The goal of this study was to compare the promoter-binding activity of p53 and p73 at steady state and after genotoxic stress induced by hydroxyurea.  相似文献   
45.
46.
Pathogen-induced plant responses include changes in both volatile and non-volatile secondary metabolites. To characterize the role of bacterial pathogenesis in plant volatile emissions, tobacco plants, Nicotiana tabacum L. K326, were inoculated with virulent, avirulent, and mutant strains of Pseudomonas syringae. Volatile compounds released by pathogen-inoculated tobacco plants were collected, identified, and quantified. Tobacco plants infected with the avirulent strains P. syringae pv. maculicola ES4326 (Psm ES4326) or pv. tomato DC3000 (Pst DC3000), emitted quantitatively different, but qualitatively similar volatile blends of (E)-beta-ocimene, linalool, methyl salicylate (MeSA), indole, caryophyllene, beta-elemene, alpha-farnesene, and two unidentified sesquiterpenes. Plants treated with the hrcC mutant of Pst DC3000 (hrcC, deficient in the type-III secretion system) released low levels of many of the same volatile compounds as in Psm ES4326- or Pst DC3000-infected plants, with the exception of MeSA, which occurred only in trace amounts. Interaction of the virulent pathogen P. syringae pv. tabaci (Pstb), with tobacco plants resulted in a different volatile blend, consisting of MeSA and two unidentified sesquiterpenes. Overall, maximum volatile emissions occurred within 36 h post-inoculation in all the treatments except for the Pstb infection that produced peak volatile emissions about 60 h post-inoculation. (E)-beta-Ocimene was released in a diurnal pattern with the greatest emissions during the day and reduced emissions at night. Both avirulent strains, Psm ES4326 and Pst DC3000, induced accumulation of free salicylic acid (SA) within 6 h after inoculation and conjugated SA within 60 h and 36 h respectively. In contrast, SA inductions by the virulent strain Pstb occurred much later and conjugated SA increased slowly for a longer period of time, while the hrcC mutant strain did not trigger free and conjugated SA accumulations in amounts significantly different from control plants. Jasmonic acid, known to induce plant volatile emissions, was not produced in significantly higher levels in inoculated plants compared to the control plants in any treatments, indicating that induced volatile emissions from tobacco plants in response to P. syringae are not linked to changes in jasmonic acid.  相似文献   
47.
Adenovirus (Ad) vectors for gene therapy are made replication defective by deletion of E1 region genes. For isolation, propagation, and large-scale production of such vectors, E1 functions are supplied in trans from a stable cell line. Virtually all Ad vectors used for clinical studies are produced in the 293 cell, a human embryonic kidney cell line expressing E1 functions from an integrated segment of the left end of the Ad type 5 (Ad5) genome. Replication-competent vector variants that have regained E1 sequences have been observed within populations of Ad vectors grown on 293 cells. These replication-competent variants presumably result from recombination between vector and 293 cell Ad5 sequences. We have developed Ad2-based vectors and have characterized at the molecular level examples of replication-competent variants. All such variants analyzed are Ad2-Ad5 chimeras in which the 293 cell Ad5 E1 sequences have become incorporated into the viral genome by legitimate recombination events. A map of Ad5 sequences within the 293 cell genome developed in parallel is consistent with the proposed recombination events. To provide a convenient vector production system that circumvents the generation of replication-competent variants, we have modified the Ad2 vector backbone by deleting or rearranging the protein IX coding region normally present downstream from the E1 region such that the frequency of recombination between vector and 293 cell Ad5 sequences is greatly reduced. Twelve serial passages of an Ad2 vector lacking the protein IX gene were carried out without generating replication-competent variants. In the course of producing and testing more than 30 large-scale preparations of vectors lacking the protein IX gene or having a rearranged protein IX gene, only three examples of replication-competent variants were observed. Use of these genome modifications allows use of conventional 293 cells for production of large-scale preparations of Ad-based vectors lacking replication-competent variants.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号