首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   38篇
  2021年   2篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   11篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   7篇
  2006年   11篇
  2005年   7篇
  2004年   11篇
  2003年   7篇
  2002年   7篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1995年   3篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1971年   1篇
  1946年   1篇
排序方式: 共有157条查询结果,搜索用时 31 毫秒
101.
Studies in model organisms suggest that epistasis may play an important role in the etiology of complex diseases and traits in humans. With the era of large-scale genome-wide association studies fast approaching, it is important to quantify whether it will be possible to detect interacting loci using realistic sample sizes in humans and to what extent undetected epistasis will adversely affect power to detect association when single-locus approaches are employed. We therefore investigated the power to detect association for an extensive range of two-locus quantitative trait models that incorporated varying degrees of epistasis. We compared the power to detect association using a single-locus model that ignored interaction effects, a full two-locus model that allowed for interactions, and, most important, two two-stage strategies whereby a subset of loci initially identified using single-locus tests were analyzed using the full two-locus model. Despite the penalty introduced by multiple testing, fitting the full two-locus model performed better than single-locus tests for many of the situations considered, particularly when compared with attempts to detect both individual loci. Using a two-stage strategy reduced the computational burden associated with performing an exhaustive two-locus search across the genome but was not as powerful as the exhaustive search when loci interacted. Two-stage approaches also increased the risk of missing interacting loci that contributed little effect at the margins. Based on our extensive simulations, our results suggest that an exhaustive search involving all pairwise combinations of markers across the genome might provide a useful complement to single-locus scans in identifying interacting loci that contribute to moderate proportions of the phenotypic variance.  相似文献   
102.
We have analyzed data from 573 pedigrees from the United Kingdom for evidence for linkage to loci influencing adult stature. Our data set comprised 1,214 diabetic and 163 nondiabetic siblings for whom height data were available. We used variance-components analysis implemented in GENEHUNTER 2 and a modification of the Haseman-Elston regression method, HE-COM. We found evidence for a locus on 3p26 (LOD score 3.17) influencing height in this adult sample, with less-significant evidence for loci on chromosomes 7, 10, 15, 17, 19, and 20. Our findings extend similar recent studies in Scandinavian and Quebecois populations, adding further evidence that height is indeed under the control of multiple genes.  相似文献   
103.

Background  

With the completion of the Human Genome Project and recent advancements in mutation detection technologies, the volume of data available on genetic variations has risen considerably. These data are stored in online variation databases and provide important clues to the cause of diseases and potential side effects or resistance to drugs. However, the data presentation techniques employed by most of these databases make them difficult to use and understand.  相似文献   
104.
105.
Teng DH  Hsu F  Peterson I  Cardon KE  Caponigro G  Kamb A 《BioTechniques》2001,30(4):868-72, 874, 876-7
PCR is ubiquitous in molecular biology. It is used to amplify single sequences from large genomes, or populations of sequences from complex mixtures such as cDNA libraries in mammalian cells. These cDNA libraries are often employed in subsequent labor-intensive experiments such as genetic screens, the outcome of which depends on library quality. The use of PCR to amplify diverse sequence populations raises important technical issues. One question is whether or not PCR is capable of maintaining population diversity, specifically with respect to template selection in the first rounds of the amplification process (i.e., the possibility that rare sequences in a complex mixture are lost because of amplification failure at the outset of the PCR). Here, we analyze the properties of PCR in the context of template selection in complex mixtures and show that it is an excellent method for preserving diversity.  相似文献   
106.
High-resolution mapping is an important step in the identification of complex disease genes. In outbred populations, linkage disequilibrium is expected to operate over short distances and could provide a powerful fine-mapping tool. Here we build on recently developed methods for linkage-disequilibrium mapping of quantitative traits to construct a general approach that can accommodate nuclear families of any size, with or without parental information. Variance components are used to construct a test that utilizes information from all available offspring but that is not biased in the presence of linkage or familiality. A permutation test is described for situations in which maximum-likelihood estimates of the variance components are biased. Simulation studies are used to investigate power and error rates of this approach and to highlight situations in which violations of multivariate normality assumptions warrant the permutation test. The relationship between power and the level of linkage disequilibrium for this test suggests that the method is well suited to the analysis of dense maps. The relationship between power and family structure is investigated, and these results are applicable to study design in complex disease, especially for late-onset conditions for which parents are usually not available. When parental genotypes are available, power does not depend greatly on the number of offspring in each family. Power decreases when parental genotypes are not available, but the loss in power is negligible when four or more offspring per family are genotyped. Finally, it is shown that, when siblings are available, the total number of genotypes required in order to achieve comparable power is smaller if parents are not genotyped.  相似文献   
107.
We present a novel approach to disease-gene mapping via cladistic analysis of single-nucleotide polymorphism (SNP) haplotypes obtained from large-scale, population-based association studies, applicable to whole-genome screens, candidate-gene studies, or fine-scale mapping. Clades of haplotypes are tested for association with disease, exploiting the expected similarity of chromosomes with recent shared ancestry in the region flanking the disease gene. The method is developed in a logistic-regression framework and can easily incorporate covariates such as environmental risk factors or additional unlinked loci to allow for population structure. To evaluate the power of this approach to detect disease-marker association, we have developed a simulation algorithm to generate high-density SNP data with short-range linkage disequilibrium based on empirical patterns of haplotype diversity. The results of the simulation study highlight substantial gains in power over single-locus tests for a wide range of disease models, despite overcorrection for multiple testing.  相似文献   
108.
109.
110.
The evaluation of results from primary genomewide linkage scans of complex human traits remains an area of importance and considerable debate. Apart from the usual assessment of statistical significance by use of asymptotic and empirical calculations, an additional means of evaluation--based on counting the number of distinct regions showing evidence of linkage--is possible. We have explored the characteristics of such a locus-counting method over a range of experimental conditions typically encountered during genomewide scans for complex trait loci. Under the null hypothesis, factors that have an impact on the informativeness of the data--such as map density, availability of parental data, and completeness of genotyping--are seen to markedly influence the number of regions of excess allele sharing and the empirically derived genomewide significance of the associated LOD score thresholds. In some circumstances, the expected number of regions is less than one-quarter of that predicted under the assumption of a dense map and complete extraction of inheritance information. We have applied this method to a previously analyzed data set--the Warren 2 genome scan for type 2-diabetes susceptibility--and demonstrate that more regions showing evidence for linkage were observed in the primary genome scan than would be expected by chance, across the whole range of LOD scores, even though no single linkage result achieved empirical genomewide statistical significance. Locus counting may be useful in assessing the results from genome scans for complex traits in general, especially because relatively few scans generate evidence for linkage reaching genomewide significance by dense-map criteria. By taking account of the effects of reduced data informativeness on the expected number of regions showing evidence for linkage, a more meaningful, and less conservative, evaluation of the results from such linkage studies is possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号