首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2007年   2篇
  2006年   1篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1978年   1篇
  1977年   1篇
  1974年   2篇
  1970年   2篇
  1962年   2篇
  1958年   3篇
  1954年   1篇
  1953年   1篇
  1951年   2篇
  1948年   1篇
  1945年   1篇
排序方式: 共有63条查询结果,搜索用时 31 毫秒
41.
BACKGROUND: A review of the nonsteroidal anti‐inflammatory drug (NSAID) literature suggested occurrences of low‐level incidences of cardiovascular and midline defects in rabbit fetuses exposed in utero. Aspirin (acetylsalicylic acid, ASA) is a widely used NSAID that irreversibly inhibits cyclooxygenases (COXs) 1 and 2. ASA has been studied extensively in rats and has consistently increased low‐incidence cardiovascular malformations and defects in midline closure. The objectives of the current study were to comprehensively define the developmental toxicology profile of ASA in rabbits by using a dosing paradigm encompassing the period of organogenesis and to test the hypothesis that maternal gastrointestinal toxicity after repeated dose administrations hampers the detection of low‐incidence malformations with ASA in rabbits by limiting ASA administration to sensitive windows for cardiovascular development and midline closure. METHODS: ASA was administered to pregnant New Zealand White rabbits from gestation days (GDs) 7 to 19 at dose levels of 125, 250, and 350 mg/kg per day and as single doses of 500, 750, or 1000 mg/kg on GD 9, 10, or 11. Cesarean sections were performed on GD 29, and the fetuses were examined for external, visceral, and skeletal development. RESULTS: In the repeated dose study, maternal toxicity was exhibited in the 250‐ and 350‐mg/kg per day groups by mortality and decreased food consumption and body weight gain. In the single dose studies, maternal toxicity was exhibited at all doses by reductions in body weight gain and food consumption for 3 days after treatment. Fetal body weight was significantly reduced in the repeated dose study at 350 mg/kg per day. Fetal weights were not affected by single doses of ASA on GD 9, 10, or 11. There were no treatment‐related external, visceral, or skeletal malformations associated with ASA administration throughout organogenesis or with single doses administered during critical developmental windows. CONCLUSION: These findings supported previous work demonstrating that ASA is not teratogenic in rabbits, as opposed to rats, even when large doses are administered on single days during specific windows of development. Birth Defects Research (Part B) 68:38–46, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   
42.
BACKGROUND: A review of the scientific literature suggested the occurrence of low‐level incidences of ventricular septal defect (VSD) and midline defect (MD) in rat fetuses and diaphragmatic hernia (DH), VSD, and MD in rabbit fetuses after maternal exposure to nonsteroidal anti‐inflammatory drugs (NSAIDs). Aspirin, an NSAID that irreversibly inhibits cyclooxygenase 1 (COX‐1) and COX‐2, induces DH, VSD, and MD when administered as one dose during the sensitive periods of development in rats. Unlike aspirin, other NSAIDs, including selective COX‐2 inhibitors, reversibly inhibit COX activity. To evaluate whether the dysmorphogenesis observed after maternal NSAID exposure correlates with COX‐1 or COX‐2 inhibition, a series of compounds with different capacities to inhibit COX‐1 and COX‐2 were administered to pregnant rats and rabbits during the sensitive period for heart development and midline closure. METHODS: The compounds selected, ranked from the most COX‐2 selective to the most COX‐1 selective based on COX inhibition in a human whole blood assay, were CJ‐19,209, meloxicam, diclofenac, diflunisal, ibuprofen, and ketorolac. Rat dams were treated on gestation days (GDs) 9 and 10, and rabbit does were treated on GDs 9, 10, and 11. The doses selected for evaluation represented the maximum tolerable dose for the compound, with the exception of CJ‐19,209, which was dosed at 1000 mg/kg. Fetuses were collected by cesarean section on GDs 21 and 29 for rats and rabbits, respectively, and all fetuses were examined for external and visceral developmental anomalies. RESULTS: In rabbits, diflunisal induced DH, VSD, and MD (omphalocele) and single incidences of VSD and MD (gastroschisis) were noted in the ibuprofen group; no other developmental findings were associated with treatment. In rats, ibuprofen, diflunisal, and ketorolac induced increases in the incidence of VSD. In general, the induction of developmental defects was associated with compounds that selectively inhibit COX‐1 or have a high ratio of COX‐1 to COX‐2 inhibition. CONCLUSIONS: Inhibition of COX‐1 may be involved in the disruption of heart development, whereas the selective inhibition of COX‐2 (as assessed with CJ‐19,209) appears to have no effect on heart development and midline closure in rats and rabbits. Birth Defects Research (Part B) 68:47–56, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   
43.
BACKGROUND: Lasofoxifene is a nonsteroidal selective estrogen receptor modulator (SERM). With high affinity to the alpha and beta human estrogen receptors and greater potency than other SERMs, lasofoxifene is potentially a superior treatment for postmenopausal osteoporosis. In light of the known effects of estrogen-modulating compounds on female reproductive indices, two studies were conducted to evaluate the effects of lasofoxifene on female rat cyclicity, reproduction, and parturition. METHODS: One study evaluated effects of lasofoxifene on estrous cyclicity, and the second study assessed effects on implantation and parturition. In the cyclicity study, lasofoxifene was administered to female rats at doses of 0.1, 0.3, and 1.0 mg/kg/day for 14 consecutive days. After treatment, there was a 3-week reversibility phase followed by a mating phase. In the implantation study, lasofoxifene was administered to pregnant female rats at doses of 0.01, 0.03, and 0.1 mg/kg/day for 7 consecutive days (gestation day [GD] 0-6). Some animals were euthanized on GD 21, and the remainder of the group was allowed to deliver the F1 generation. Several developmental indices were evaluated in the F1 pups through post-natal day (PND) 21. RESULTS: In the cyclicity study, all lasofoxifene-treated females were anestrous by Study Day 7 (1.0 mg/kg) or 9 (0.3 and 0.1 mg/kg). The reversibility phase resulted in restoration of normal estrous cycles by the end of 1 (0.1 mg/kg) or 2 weeks (0.3 and 1.0 mg/kg). During the mating phase, no adverse effects occurred in pregnancy success or reproductive parameters. In the implantation study, all doses of lasofoxifene increased pre- and post-implantation losses, increased gestation length, and reduced litter size. None of the developmental parameters measured on the F1 generation was adversely affected. CONCLUSION: Lasofoxifene reversibly altered the estrous cycle and inhibited implantation, consistent with what would be expected from a member of the SERM class.  相似文献   
44.
45.
Sequencing and analysis of an Irish human genome   总被引:1,自引:0,他引:1  

Background

Recent studies generating complete human sequences from Asian, African and European subgroups have revealed population-specific variation and disease susceptibility loci. Here, choosing a DNA sample from a population of interest due to its relative geographical isolation and genetic impact on further populations, we extend the above studies through the generation of 11-fold coverage of the first Irish human genome sequence.

Results

Using sequence data from a branch of the European ancestral tree as yet unsequenced, we identify variants that may be specific to this population. Through comparisons with HapMap and previous genetic association studies, we identified novel disease-associated variants, including a novel nonsense variant putatively associated with inflammatory bowel disease. We describe a novel method for improving SNP calling accuracy at low genome coverage using haplotype information. This analysis has implications for future re-sequencing studies and validates the imputation of Irish haplotypes using data from the current Human Genome Diversity Cell Line Panel (HGDP-CEPH). Finally, we identify gene duplication events as constituting significant targets of recent positive selection in the human lineage.

Conclusions

Our findings show that there remains utility in generating whole genome sequences to illustrate both general principles and reveal specific instances of human biology. With increasing access to low cost sequencing we would predict that even armed with the resources of a small research group a number of similar initiatives geared towards answering specific biological questions will emerge.  相似文献   
46.
47.
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号