首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   86篇
  国内免费   2篇
  2021年   7篇
  2018年   7篇
  2017年   14篇
  2016年   6篇
  2015年   12篇
  2014年   9篇
  2013年   18篇
  2012年   25篇
  2011年   22篇
  2010年   34篇
  2009年   24篇
  2008年   24篇
  2007年   18篇
  2006年   15篇
  2005年   14篇
  2004年   13篇
  2003年   10篇
  2002年   14篇
  2001年   11篇
  2000年   12篇
  1999年   16篇
  1998年   16篇
  1997年   10篇
  1996年   11篇
  1995年   6篇
  1994年   12篇
  1993年   8篇
  1992年   12篇
  1991年   12篇
  1990年   11篇
  1989年   11篇
  1988年   13篇
  1987年   8篇
  1986年   13篇
  1985年   11篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   4篇
  1980年   6篇
  1979年   10篇
  1978年   14篇
  1977年   10篇
  1976年   15篇
  1975年   6篇
  1973年   7篇
  1972年   5篇
  1969年   4篇
  1968年   5篇
  1966年   6篇
排序方式: 共有615条查询结果,搜索用时 15 毫秒
71.
72.
Dziedzic SA  Caplan AB 《Autophagy》2011,7(5):490-500
Eukaryotes use a common set of genes to perform two mechanistically similar autophagic processes. Bulk autophagy harvests proteins nonselectively and reuses their constitutents when nutrients are scarce. In contrast, different forms of selective autophagy target protein aggregates or damaged organelles that threaten to interfere with growth. Yeast uses one form of selective autophagy, called cytoplasm-to-vacuole targeting (Cvt), to engulf two vacuolar enzymes in Cvt vesicles ("CVT-somes") within which they are transported to vacuoles for maturation. While both are dispensable normally, bulk and selective autophagy help sustain life under stressful conditions. Consistent with this view, knocking out several genes participating in Cvt and specialized autophagic pathways heightened the sensitivity of Saccharomyces cerevisiae to inhibitory levels of Zn(2+). The loss of other autophagic genes, and genes responsible for apoptotic cell death, had no such effect. Unexpectedly, the loss of members of a third set of autophagy genes heightened cellular resistance to zinc as if they encoded proteins that actively contributed to zinc-induced cell death. Further studies showed that both sensitive and resistant strains accumulated similar amounts of H2O2 during zinc treatments, but that more sensitive strains showed signs of necrosis sooner. Although zinc lethality depended on autophagic proteins, studies with several reporter genes failed to reveal increased autophagic activity. In fact, microscopy analysis indicated that Zn(2+) partially inhibited fusion of Cvt vesicles with vacuoles. Further studies into how the loss of autophagic processes suppressed necrosis in yeast might reveal whether a similar process could occur in plants and animals.  相似文献   
73.
It was reported that some proteins known to cause renal cystic disease (NPHP6; BBS1, and BBS4) also localize to the olfactory epithelium (OE), and that mutations in these proteins can cause anosmia in addition to renal cystic disease. We demonstrate here that a number of other proteins associated with renal cystic diseases - polycystin 1 and 2 (PC1, PC2), and Meckel-Gruber syndrome 1 and 3 (MKS1, MKS3) - localize to the murine OE. PC1, PC2, MKS1 and MKS3 are all detected in the OE by RT-PCR. We find that MKS3 localizes specifically to dendritic knobs of olfactory sensory neurons (OSNs), while PC1 localizes to both dendritic knobs and cilia of mature OSNs. In mice carrying mutations in MKS1, the expression of the olfactory adenylate cyclase (AC3) is substantially reduced. Moreover, in rats with renal cystic disease caused by a mutation in MKS3, the laminar organization of the OE is perturbed and there is a reduced expression of components of the odor transduction cascade (G(olf), AC3) and α-acetylated tubulin. Furthermore, we show with electron microscopy that cilia in MKS3 mutant animals do not manifest the proper microtubule architecture. Both MKS1 and MKS3 mutant animals show no obvious alterations in odor receptor expression. These data show that multiple renal cystic proteins localize to the OE, where we speculate that they work together to regulate aspects of the development, maintenance or physiological activities of cilia.  相似文献   
74.
Walz D  Caplan SR 《Biophysical journal》2005,89(3):1650-1656
The bacterial flagellar motor is generally supposed to be a stepping mechanism. The main evidence for this is based on a fluctuation analysis of experiments with tethered bacteria in which rotation frequency was varied by applying an external torque: the variance in time taken for a fixed number of revolutions was found to be essentially proportional to the inverse square of the frequency. This behavior was shown to characterize a Poissonian stepper. Here we present a rigorous kinetic and stochastic analysis of elastic crossbridge stepping in tethered bacteria. We demonstrate that Poissonian stepping is a virtually unachievable limit. To the extent that a system may approach Poissonian stepping it cannot be influenced by an externally applied torque; stepping mechanisms capable of being so influenced are necessarily non-Poissonian and exhibit an approximately inverse cubic dependence. This conclusion applies whatever the torsional characteristics of the tether may be, and contrary to claims, no perceptible relaxation of the tether following each step is found. Furthermore, the inverse square dependence is a necessary but not sufficient condition for Poissonian stepping, since a nonstepping mechanism, which closely reproduces most experimental data, also fulfills this condition. Hence the inference that crossbridge-type stepping occurs is not justified.  相似文献   
75.
76.
Cdc37 is a molecular chaperone that is important for the stability and activity of several protein kinases, including Cdk4 and Raf1. We first determined, using in vitro assays, that Cdc37 binds to the amino-terminal lobe of Cdk4. Subsequent mutagenesis revealed that Gly-15 (G15A) and Gly-18 (G18A) were critical for Cdc37-Cdk4 complex formation. Gly-15 and Gly-18 of Cdk4 are within the conserved Gly-X-Gly-X-X-Gly motif that is required for ATP binding to the kinase. Mutation of either glycine at the equivalent positions of Raf1 (G358A and G361A) also inhibited Cdc37 binding to Raf1. Replacing another conserved residue critical for ATP binding and kinase activity, Lys-35 (K35A), reduced Cdc37-Cdk4 complex formation but to a lesser extent. The interaction of Cdk4 with Cdc37 in vitro was not sensitive to changes in ATP levels. Cell-based assays indicated that Cdk4(G15A) and Cdk4(G18A) were present at the same level as wild type Cdk4. Equivalent amounts of p16 bound to Cdk4(G15A) and Cdk4(G18A) relative to wild type Cdk4, suggesting that Cdk4(G15A) and Cdk4(G18A) adopt significant tertiary structure. However, in contrast to wild type Cdk4, Cdk4(G15A), and Cdk4(G18A) had greatly reduced binding of cyclin D1, Cdc37, and Hsp90. Importantly, overexpression of Cdc37 not only stimulated cyclin D1 binding to wild type Cdk4 but also restored its binding to Cdk4(G15A). Under the same conditions, p16 binding to wild type Cdk4 was suppressed. Our findings show that the interaction of Cdc37 with its client protein kinases requires amino acid residues within a motif that is present in many protein kinases.  相似文献   
77.
The interfollicular dermis of adult human skin is partitioned into histologically and physiologically distinct papillary and reticular zones. Each of these zones contains a unique population of fibroblasts that differ in respect to their proliferation kinetics, rates at which they contract type I collagen gels, and in their relative production of decorin and versican. Here, site-matched papillary and reticular dermal fibroblasts couples were compared to determine whether each population interacted with keratinocytes in an equivalent or different manner. Papillary and reticular fibroblasts grown in monolayer culture differed significantly from each other in their release of keratinocyte growth factor (KGF) and granulocyte-macrophage colony stimulating factor (GM-CSF) into culture medium. Some matched fibroblast couples also differed in their constitutive release of interleukin-6 (IL-6). Papillary fibroblasts produced a higher ratio of GM-CSF to KGF than did corresponding reticular fibroblasts. Interactions between site-matched papillary and reticular couples were also assayed in a three-dimensional culture system where fibroblasts and keratinocytes were randomly mixed, incorporated into type I collagen gels, and allowed to sort. Keratinocytes formed distinctive cellular masses in which the keratinocytes were organized such that the exterior most layer of cells exhibited characteristics of basal keratinocytes and the interior most cells exhibited characteristics of terminally differentiated keratinocytes. In the presence of papillary dermal fibroblasts, keratinocyte masses were highly symmetrical and cells expressed all levels of differentiation markers. In contrast, keratinocyte masses that formed in the presence of reticular fibroblasts tended to have irregular shapes, and terminal differentiation was suppressed. Furthermore, basement membrane formation was retarded in the presence of reticular cells. These studies indicate that site-matched papillary and reticular dermal fibroblasts qualitatively differ in their support of epidermal cells, with papillary cells interacting more effectively than corresponding reticular cells.  相似文献   
78.
79.
80.
We developed an approach for focused gallium-ion beam scanning electron microscopy with energy filtered detection of backscattered electrons to create near isometric voxels for high-resolution whole cell visualization. Specifically, this method allowed us to create three-dimensional volumes of high-pressure frozen, freeze-substituted Saccharomyces cerevisiae yeast cells with pixel resolutions down to 3 nm/pixel in x, y, and z, supported by both empirical data and Monte Carlo simulations. As a result, we were able to segment and quantify data sets of numerous targeted subcellular structures/organelles at high-resolution, including the volume, volume percentage, and surface area of the endoplasmic reticulum, cell wall, vacuoles, and mitochondria from an entire cell. Sites of mitochondrial and endoplasmic reticulum interconnectivity were readily identified in rendered data sets. The ability to visualize, segment, and quantify entire eukaryotic cells at high-resolution (potentially sub-5 nanometers isotropic voxels) will provide new perspectives and insights of the inner workings of cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号