首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   51篇
  2023年   2篇
  2022年   6篇
  2021年   18篇
  2020年   6篇
  2019年   13篇
  2018年   7篇
  2017年   6篇
  2016年   25篇
  2015年   35篇
  2014年   32篇
  2013年   49篇
  2012年   59篇
  2011年   62篇
  2010年   23篇
  2009年   35篇
  2008年   62篇
  2007年   53篇
  2006年   38篇
  2005年   36篇
  2004年   61篇
  2003年   30篇
  2002年   28篇
  2001年   12篇
  2000年   17篇
  1999年   10篇
  1998年   7篇
  1997年   9篇
  1996年   6篇
  1995年   9篇
  1994年   12篇
  1992年   6篇
  1991年   5篇
  1990年   8篇
  1989年   5篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1970年   1篇
  1969年   1篇
排序方式: 共有829条查询结果,搜索用时 15 毫秒
91.
Recently, a random breakage model has been proposed to explain the negative correlation between mean chromosome length and chromosome number that is found in many groups of species and is consistent with Menzerath-Altmann law, a statistical law that defines the dependency between the mean size of the whole and the number of parts in quantitative linguistics. Here, the central assumption of the model, namely that genome size is independent from chromosome number is reviewed. This assumption is shown to be unrealistic from the perspective of chromosome structure and the statistical analysis of real genomes. A general class of random models, including that random breakage model, is analyzed. For any model within this class, a power law with an exponent of -1 is predicted for the expectation of the mean chromosome size as a function of chromosome length, a functional dependency that is not supported by real genomes. The random breakage and variants keeping genome size and chromosome number independent raise no serious objection to the relevance of correlations consistent with Menzerath-Altmann law across taxonomic groups and the possibility of a connection between human language and genomes through that law.  相似文献   
92.
Vitamin A (all-trans-retinol) must be adequately distributed within the mammalian body to produce visual chromophore in the eyes and all-trans-retinoic acid in other tissues. Vitamin A is transported in the blood bound to retinol-binding protein (holo-RBP), and its target cells express an RBP receptor encoded by the Stra6 (stimulated by retinoic acid 6) gene. Here we show in mice that cellular uptake of vitamin A from holo-RBP depends on functional coupling of STRA6 with intracellular lecithin:retinol acyltransferase (LRAT). Thus, vitamin A uptake from recombinant holo-RBP exhibited by wild type mice was impaired in Lrat(-/-) mice. We further provide evidence that vitamin A uptake is regulated by all-trans-retinoic acid in non-ocular tissues of mice. When in excess, vitamin A was rapidly taken up and converted to its inert ester form in peripheral tissues, such as lung, whereas in vitamin A deficiency, ocular retinoid uptake was favored. Finally, we show that the drug fenretinide, used clinically to presumably lower blood RBP levels and thus decrease circulating retinol, targets the functional coupling of STRA6 and LRAT to increase cellular vitamin A uptake in peripheral tissues. These studies provide mechanistic insights into how vitamin A is distributed to peripheral tissues in a regulated manner and identify LRAT as a critical component of this process.  相似文献   
93.
Target-mediated clearance and high antigen load can hamper the efficacy and dosage of many antibodies. We show for the first time that the mouse, cynomolgus, and human cross-reactive, antagonistic anti-proprotein convertase substilisin kexin type 9 (PCSK9) antibodies J10 and the affinity-matured and humanized J16 exhibit target-mediated clearance, resulting in dose-dependent pharmacokinetic profiles. These antibodies prevent the degradation of low density lipoprotein receptor, thus lowering serum levels of LDL-cholesterol and potently reducing serum cholesterol in mice, and selectively reduce LDL-cholesterol in cynomolgus monkeys. In order to increase the pharmacokinetic and efficacy of this promising therapeutic for hypercholesterolemia, we engineered pH-sensitive binding to mouse, cynomolgus, and human PCSK9 into J16, resulting in J17. This antibody shows prolonged half-life and increased duration of cholesterol lowering in two species in vivo by binding to endogenous PCSK9 in mice and cynomolgus monkeys, respectively. The proposed mechanism of this pH-sensitive antibody is that it binds with high affinity to PCSK9 in the plasma at pH 7.4, whereas the antibody-antigen complex dissociates at the endosomal pH of 5.5-6.0 in order to escape from target-mediated degradation. Additionally, this enables the antibody to bind to another PCSK9 and therefore increase the antigen-binding cycles. Furthermore, we show that this effect is dependent on the neonatal Fc receptor, which rescues the dissociated antibody in the endosome from degradation. Engineered pH-sensitive antibodies may enable less frequent or lower dosing of antibodies hampered by target-mediated clearance and high antigen load.  相似文献   
94.
Alzheimer's disease, the most common cause of dementia in the elderly and characterized by the deposition and accumulation of plaques, is composed in part of β-amyloid (Aβ) peptides, loss of neurons, and the accumulation of neurofibrillary tangles. Here, we describe ponezumab, a humanized monoclonal antibody, and show how it binds specifically to the carboxyl (C)-terminus of Aβ40. Ponezumab can label Aβ that is deposited in brain parenchyma found in sections from Alzheimer's disease casualties and in transgenic mouse models that overexpress Aβ. Importantly, ponezumab does not label full-length, non-cleaved amyloid precursor protein on the cell surface. The C-terminal epitope of the soluble Aβ present in the circulation appears to be available for ponezumab binding because systemic administration of ponezumab greatly elevates plasma Aβ40 levels in a dose-dependent fashion after administration to a mouse model that overexpress human Aβ. Administration of ponezumab to transgenic mice also led to a dose-dependent reduction in hippocampal amyloid load. To further explore the nature of ponezumab binding to Aβ40, we determined the X-ray crystal structure of ponezumab in complex with Aβ40 and found that the Aβ40 carboxyl moiety makes extensive contacts with ponezumab. Furthermore, the structure-function analysis supported this critical requirement for carboxy group of AβV40 in the Aβ-ponezumab interaction. These findings provide novel structural insights into the in vivo conformation of the C-terminus of Aβ40 and the brain Aβ-lowering efficacy that we observed following administration of ponezumab in transgenic mouse models.  相似文献   
95.
Silent corticotroph adenoma (SCA) is a non-functioning macroadenoma that has positive immunoreactivity for ACTH. Few studies have evaluated the biochemical behaviour of these tumours. We present the case of a 65-year-old male incidentally diagnosed with SCA, in which an exhaustive study of the corticotroph axis was conducted.  相似文献   
96.
Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered.  相似文献   
97.
Dietary intake of polyunsaturated fatty acids, including omega-3 and omega-6, could modulate chronic obstructive pulmonary disease (COPD) persistent inflammation. We aimed to assess the relationship between dietary intake of omega-3 and omega-6 fatty acids and serum inflammatory markers in COPD. A total of 250 clinically stable COPD patients were included. Dietary data of the last 2 years were assessed using a validated food frequency questionnaire (122 items), which provided levels of three omega-3 fatty acids: docosahexaenoic acid, eicosapentaenoic acid and α-linolenic acid (ALA); and two omega-6 fatty acids: linoleic acid and arachidonic acid (AA). Inflammatory markers [C-reactive protein (CRP), interleukin (IL)-6, IL-8 and tumor necrosis factor alpha (TNFα)] were measured in serum. Fatty acids and inflammatory markers were dichotomised according to their median values, and their association was assessed using multivariate logistic regression. Higher intake of ALA (an anti-inflammatory omega-3 fatty acid) was associated with lower TNFα concentrations [adjusted odds ratio (OR)=0.46; P=.049]. Higher AA intake (a proinflammatory omega-6 fatty acid) was related to higher IL-6 (OR=1.96; P=.034) and CRP (OR=1.95; P=.039) concentrations. Therefore, this study provides the first evidence of an association between dietary intake of omega-3 and omega-6 fatty acids and serum inflammatory markers in COPD patients.  相似文献   
98.
99.
100.
Coronavirus envelope (E) proteins are short (~100 residues) polypeptides that contain at least one transmembrane (TM) domain and a cluster of 2-3 juxtamembrane cysteines. These proteins are involved in viral morphogenesis and tropism, and their absence leads in some cases to aberrant virions, or to viral attenuation. In common to other viroporins, coronavirus envelope proteins increase membrane permeability to ions. Although an NMR-based model for the TM domain of the E protein in the severe acute respiratory syndrome virus (SARS-CoV E) has been reported, structural data and biophysical studies of full length E proteins are not available because efficient expression and purification methods for these proteins are lacking. Herein we have used a novel fusion protein consisting of a modified β-barrel to purify both wild type and cysteine-less mutants of two representatives of coronavirus E proteins: the shortest (76 residues), from SARS-CoV E, and one of the longest (109 residues), from the infectious bronchitis virus (IBV E). The fusion construct was subsequently cleaved with cyanogen bromide and all polypeptides were obtained with high purity. This is an approach that can be used in other difficult hydrophobic peptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号