首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   19篇
  2021年   2篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   11篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   7篇
  2005年   6篇
  2004年   10篇
  2003年   11篇
  2002年   11篇
  2001年   10篇
  2000年   12篇
  1999年   9篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1991年   11篇
  1990年   8篇
  1989年   4篇
  1988年   7篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   8篇
  1981年   6篇
  1980年   4篇
  1979年   6篇
  1978年   2篇
  1977年   8篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   7篇
  1972年   4篇
  1971年   1篇
排序方式: 共有239条查询结果,搜索用时 31 毫秒
31.
Granule-bound starch synthase: structure, function, and phylogenetic utility   总被引:18,自引:2,他引:16  
Interest in the use of low-copy nuclear genes for phylogenetic analyses of plants has grown rapidly, because highly repetitive genes such as those commonly used are limited in number. Furthermore, because low- copy genes are subject to different evolutionary processes than are plastid genes or highly repetitive nuclear markers, they provide a valuable source of independent phylogenetic evidence. The gene for granule-bound starch synthase (GBSSI or waxy) exists in a single copy in nearly all plants examined so far. Our study of GBSSI had three parts: (1) Amino acid sequences were compared across a broad taxonomic range, including grasses, four dicotyledons, and the microbial homologs of GBSSI. Inferred structural information was used to aid in the alignment of these very divergent sequences. The informed alignments highlight amino acids that are conserved across all sequences, and demonstrate that structural motifs can be highly conserved in spite of marked divergence in amino acid sequence. (2) Maximum-likelihood (ML) analyses were used to examine exon sequence evolution throughout grasses. Differences in probabilities among substitution types and marked among-site rate variation contributed to the observed pattern of variation. Of the parameters examined in our set of likelihood models, the inclusion of among-site rate variation following a gamma distribution caused the greatest improvement in likelihood score. (3) We performed cladistic parsimony analyses of GBSSI sequences throughout grasses, within tribes, and within genera to examine the phylogenetic utility of the gene. Introns provide useful information among very closely related species, but quickly become difficult to align among more divergent taxa. Exons are variable enough to provide extensive resolution within the family, but with low bootstrap support. The combined results of amino acid sequence comparisons, maximum-likelihood analyses, and phylogenetic studies underscore factors that might affect phylogenetic reconstruction. In this case, accommodation of the variable rate of evolution among sites might be the first step in maximizing the phylogenetic utility of GBSSI.   相似文献   
32.
Some commercial batches of dichloroacetic acid (DCA) contain traces of chloral (trichloroacetaldehyde). Using such DCA to effect detritylation during solid-phase oligonucleotide synthesis results in the formation of a family of process impurities in which the atoms of chloral (Cl3CCHO) are incorporated between the 5'-oxygen and phosphorus atoms of an internucleotide linkage. The structure was elucidated by HPLC with UV and MS detection, digestion of the oligonucleotide, synthesis of model compounds, and 1H and 31P NMR spectroscopy. By understanding the chemistry behind its formation, we are now able to limit levels of this impurity in synthetic oligonucleotides by limiting chloral in DCA.  相似文献   
33.
Caudal autotomy, or the voluntary self-amputation of the tail, is an anti-predation strategy in lizards that depends on a complex array of environmental, individual, and species-specific characteristics. These factors affect both when and how often caudal autotomy is employed, as well as its overall rate of success. The potential costs of autotomy must be weighed against the benefits of this strategy. Many species have evolved specialized behavioral and physiological adaptations to minimize or compensate for any negative consequences. One of the most important steps following a successful autotomous escape involves regeneration of the lost limb. In some species, regeneration occurs rapidly; such swift regeneration illustrates the importance of an intact, functional tail in everyday experience. In lizards and other vertebrates, regeneration is a highly ordered process utilizing initial developmental programs as well as regeneration-specific mechanisms to produce the correct types and pattern of cells required to sufficiently restore the structure and function of the sacrificed tail. In this review, we discuss the behavioral and physiological features of self-amputation, with particular reference to the costs and benefits of autotomy and the basic mechanisms of regeneration. In the process, we identify how these behaviors could be used to explore the neural regulation of complex behavioral responses within a functional context.  相似文献   
34.
In this issue, Takahara and Maeda (2012) discover that together, Pbp1 and sequestration of the TORC1 complex in cytoplasmic mRNP stress granules provides a negative regulatory mechanism for TORC1 signaling during stress.  相似文献   
35.
An immunocytochemical approach to detection of mitochondrial disorders.   总被引:1,自引:0,他引:1  
Mitochondrial disorders can lead to a confusing array of symptoms, which frequently makes a diagnosis difficult. Traditional approaches to such diagnoses are based on enzyme activity assays, with further characterization provided by genetic analysis. However, these methods require relatively large sample sizes, are time-consuming, labor-intensive, and show variability between laboratories. Here, we report an immunocytochemical test that makes use of monoclonal antibodies to subunits from each of the oxidative phosphorylation complexes and pyruvate dehydrogenase to aid in the detection of mitochondrial disorders. It can be completed and data analyzed in less than 4 hr. We have used this test to study fibroblast cultures from patients with mitochondrial disorders arising from both mitochondrial DNA and nuclear DNA defects. We have also examined cases of Leigh syndrome arising from different genetic causes. We show that patients can be categorized on the basis of which complexes are affected and whether or not the defect being studied shows a mosaic distribution, an indicator of whether the causal mutation(s) is/are in the mitochondrial or nuclear genome. Immunocytochemical analysis as described here should be considered as an initial screen for mitochondrial disorders by which to direct (and limit) the subsequent enzymatic and genetic tests required to make an unambiguous diagnosis.  相似文献   
36.
We have investigated the structure of cytochrome c oxidase vesicle crystals by analysis at 20 Å resolution of electron micrographs of negatively stained specimens. The map clearly shows the shape of the part of the cytochrome c oxidase molecule which protrudes from the lipid bilayer. On the side of the membrane corresponding to the cytoplasmic face of the mitochondrial inner membrane, the molecule projects over 50 Å into solution. About half of the mass of the protein is in this domain, which contains the cytochrome c binding site. On the side of the membrane corresponding to the matrix face, no features are observed, which at this resolution means the protein protrudes less than 20 Å. In vesicle crystals, and probably in the mitochondrion, cytochrome c oxidase monomers are closely paired as dimers, with a clear cleft showing the boundary between monomers.  相似文献   
37.
Mitochondrial myopathies and respiratory chain proteins   总被引:3,自引:0,他引:3  
  相似文献   
38.
Structure of cytochrome c oxidase   总被引:9,自引:0,他引:9  
  相似文献   
39.
40.
Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor   总被引:3,自引:0,他引:3  
The F(1)F(0)-type ATP synthase is a key enzyme in cellular energy interconversion. During ATP synthesis, this large protein complex uses a proton gradient and the associated membrane potential to synthesize ATP. It can also reverse and hydrolyze ATP to generate a proton gradient. The structure of this enzyme in different functional forms is now being rapidly elucidated. The emerging consensus is that the enzyme is constructed as two rotary motors, one in the F(1) part that links catalytic site events with movements of an internal rotor, and the other in the F(0) part, linking proton translocation to movements of this F(0) rotor. Although both motors can work separately, they must be connected together to interconvert energy. Evidence for the function of the rotary motor, from structural, genetic and biophysical studies, is reviewed here, and some uncertainties and remaining mysteries of the enzyme mechanism are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号