首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10770篇
  免费   851篇
  国内免费   758篇
  12379篇
  2024年   24篇
  2023年   154篇
  2022年   360篇
  2021年   575篇
  2020年   382篇
  2019年   444篇
  2018年   485篇
  2017年   375篇
  2016年   451篇
  2015年   656篇
  2014年   716篇
  2013年   823篇
  2012年   1015篇
  2011年   890篇
  2010年   510篇
  2009年   436篇
  2008年   611篇
  2007年   501篇
  2006年   445篇
  2005年   383篇
  2004年   292篇
  2003年   267篇
  2002年   191篇
  2001年   178篇
  2000年   150篇
  1999年   159篇
  1998年   94篇
  1997年   95篇
  1996年   99篇
  1995年   78篇
  1994年   88篇
  1993年   64篇
  1992年   58篇
  1991年   75篇
  1990年   58篇
  1989年   42篇
  1988年   32篇
  1987年   17篇
  1986年   22篇
  1985年   19篇
  1984年   17篇
  1983年   20篇
  1982年   8篇
  1980年   3篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1968年   2篇
  1966年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
182.
比较了两种不同攀援习性,卷须缠绕种薄叶羊蹄甲(Bauhinia tenuiflora)和茎缠绕种刺果藤(Byttneria aspera),木质藤本植物的形态、生长及光合特性对不同光强(4%、35%和全光照)和土壤养分(高和低)的响应。两种藤本植物大部分表型特征主要受光照的影响,而受土壤养分的影响较小。弱光促进地上部分生长,弱光下两种植物均具有较大的比叶面积(specific leaf area,SLA)、茎生物量比(stem mass ratio,SMR)和平均叶面积比(mean leaf area ratio,LARm)。高光强下,两种植物的总生物量和投入到地下部分的比重增加,具有更大的根生物量比(root mass ratio,RMR)、更多的分枝数、更高的光合能力(maximum photosynthetic rate,Pmax)和净同化速率(net assimilation rate,NAR),综合表现为相对生长速率(relative growth rate,RGR)增加。两种藤本植物的Pmax与叶片含氮量的相关性均未达显著水平,但刺果藤的Pmax与SU志间呈显著的正相关,而薄叶羊蹄甲的Pmax与SLA之间相关性不显著。在相同光照强度和土壤养分条件下,卷须缠绕种薄叶羊蹄甲的RGR显著高于茎缠绕种刺果藤。薄叶羊蹄甲的RGR与NAR呈显著正相关,其RGR与SLA、平均叶面积比(EARm)及Pmax之间相关性不显著。刺果藤的RGR与NAR呈显著的正相关,而与SLA存在显著的负相关。上述结果表明,与土壤养分相比,光照强度可能是决定木质藤本分布更为重要的生态因子。卷须缠绕种薄叶羊蹄甲由于具有特化的攀援器官,在形态上和生理上具有更大的可塑性,这使得卷须缠绕种木质藤本在与其它植物的竞争中更具优势。  相似文献   
183.
The AKT/mTOR and NF-κB signalings are crucial pathways activated in cancers including nasopharyngeal carcinoma (NPC), which is prevalent in southern China and closely related to Epstein-Barr virus (EBV) infection. How these master pathways are persistently activated in EBV-associated NPC remains to be investigated. Here we demonstrated that EBV-encoded latent membrane protein 1 (LMP1) promoted cyclophilin A (CYPA) expression through the activation of NF-κB. The depletion of CYPA suppressed cell proliferation and facilitated apoptosis. CYPA was able to bind to AKT1, thus activating AKT/mTOR/NF-κB signaling cascade. Moreover, the use of mTOR inhibitor, rapamycin, subverted the activation of the positive feedback loop, NF-κB/CYPA/AKT/mTOR. It is reasonable that LMP1 expression derived from initial viral infection is enough to assure the constant potentiation of AKT/mTOR and NF-κB signalings. This may partly explain the fact that EBV serves as a tumor-promoting factor with minimal expression of the viral oncoprotein LMP1 in malignancies. Our findings provide new insight into the understanding of causative role of EBV in tumorigenicity during latent infection.  相似文献   
184.
185.
天然来源抗肿瘤活性产物是抗肿瘤药物先导化合物的重要资源。促分裂原活化蛋白激酶(MAPK)通路是细胞内重要的信号转导系统,可以调节细胞的生长、凋亡、黏附、迁移等过程,继而影响肿瘤的发生、发展、侵袭、转移,是潜在的抗肿瘤药物作用靶点之一。本文将对天然来源化合物作用于MAPK信号通路的靶点分子及生物效应进行阐述,为肿瘤的化学预防及治疗提供启发。  相似文献   
186.
The γ134.5 protein of herpes simplex virus 1 is an essential factor for viral virulence. In infected cells, this viral protein prevents the translation arrest mediated by double-stranded RNA-dependent protein kinase R. Additionally, it associates with and inhibits TANK-binding kinase 1, an essential component of Toll-like receptor-dependent and -independent pathways that activate interferon regulatory factor 3 and cytokine expression. Here, we show that γ134.5 is required to block the maturation of conventional dendritic cells (DCs) that initiate adaptive immune responses. Unlike wild-type virus, the γ134.5 null mutant stimulates the expression of CD86, major histocompatibility complex class II (MHC-II), and cytokines such as alpha/beta interferon in immature DCs. Viral replication in DCs inversely correlates with interferon production. These phenotypes are also mirrored in a mouse ocular infection model. Further, DCs infected with the γ134.5 null mutant effectively activate naïve T cells whereas DCs infected with wild-type virus fail to do so. Type I interferon-neutralizing antibodies partially reverse virus-induced upregulation of CD86 and MHC-II, suggesting that γ134.5 acts through interferon-dependent and -independent mechanisms. These data indicate that γ134.5 is involved in the impairment of innate immunity by inhibiting both type I interferon production and DC maturation, leading to defective T-cell activation.Herpes simplex virus 1 (HSV-1) is a human pathogen responsible for localized mucocutaneous lesions and encephalitis (51). Following primary infection, HSV-1 establishes a latent or lytic infection in which the virus interacts with host cells, which include dendritic cells (DCs), required to initiate adaptive immune responses (36). Immature DCs, which reside in almost all peripheral tissues, are able to capture and process viral antigens (15). In this process, DCs migrate to lymph nodes, where they mature and present antigens to T cells. Mature DCs display high levels of major histocompatibility complex class II (MHC-II) and costimulatory molecules such as CD40, CD80, and CD86. Additionally, DCs release proinflammatory cytokines such as interleukin-12 (IL-12), tumor necrosis factor alpha, alpha interferon (IFN-α), and IFN-β, which promote DC maturation and activation. An important feature of functional DCs is to activate naïve T cells, and myeloid submucosal and lymph node resident DCs are responsible for HSV-specific T-cell activation (2, 45, 52). Moreover, DCs play a direct role in innate antiviral immunity by secreting type I IFN.HSV-1 is capable of infecting both immature and mature DCs (20, 24, 34, 38, 42). A previous study suggested that HSV entry into DCs requires viral receptors HVEM and nectin-2 (42). Upon HSV infection, plasmacytoid DCs detect viral genome through Toll-like receptor 9 (TLR9) and produce high levels of IFN-α (16, 23, 30, 40). In contrast, myeloid DCs, which are major antigen-presenting cells, recognize viral components through distinct pathways, independently of TLR9 (16, 36, 40). It has been suggested previously that HSV proteins or RNA intermediates produced during viral replication trigger myeloid DCs (16, 40). Indeed, a protein complex that consists of HSV glycoproteins B, D, H, and L stimulates the expression of CD40, CD83, CD86, and cytokines in myeloid DCs (41). Hence, DCs sense HSV through TLR-dependent and -independent mechanisms (16, 40, 41). Nevertheless, HSV replication compromises DC functions and subsequent T-cell activation (3, 20, 24, 42). HSV-1 interaction with immature DCs results in the downregulation of costimulatory molecules and cytokines (20, 34, 38, 42). While HSV-2 induces rapid apoptosis, HSV-1 does so with a delayed kinetics in human DCs (4, 20, 38). HSV-1 is also reported to interfere with functions of mature DCs (24, 39). Upon infection, HSV-1 induces the degradation of CD83 but not CD80 or CD86 in mature DCs (24, 25). Additionally, HSV-1 reduces levels of the chemokine receptors CCR7 and CXCR4 on mature DCs and subsequently impairs DC migration to the respective chemokine ligands CCL19 and CXCL12 (39).Although HSV infection impairs DC functions, viral components responsible for this impairment have not been thoroughly investigated. It has been suggested previously that the virion host shut-off protein (vhs) of HSV-1 contributes partially to the viral block of DC activation (43). This activity is thought to stem from the ability of vhs to destabilize host mRNA. Emerging evidence suggests that ICP0 perturbs the function of mature DCs, where it mediates CD83 degradation via cellular proteasomes (25). Findings from related studies show that ICP0 inhibits the induction of IFN-stimulated genes mediated by IFN regulatory factor 3 (IRF3) or IRF7 in other cell types (11, 27, 32, 33). However, the link of ICP0 activities to DC maturation remains to be established. Recently, we found that γ134.5, an HSV virulence factor, associates with and inhibits TANK-binding kinase 1 (TBK1), an essential component of TLR-dependent and -independent pathways that activates IRF3 and cytokine expression (49). Interestingly, an HSV mutant lacking γ134.5 stimulates MHC-II surface expression in glioblastoma cells (47). These observations raise the hypothesis that γ134.5 may modulate DC maturation during HSV infection.In this study, we report that γ134.5 is required to perturb DC maturation during HSV infection, leading to impaired T-cell activation. Wild-type virus, but not the γ134.5 null mutant, suppresses the expression of costimulatory molecules as well as cytokines in DCs. We provide evidence that the viral block of DC maturation is associated with reduced IFN-α/β secretion. Furthermore, the expression of γ134.5 inhibits DC-mediated allogeneic T-cell activation and IFN-γ production. IFN-neutralizing antibodies partially reverse DC maturation induced by the γ134.5 null mutant. These results shed light on the role of γ134.5 relevant to DC maturation and T-cell responses in HSV infection.  相似文献   
187.
188.
In an effort to develop a chemically inducible system for insect management, we studied production of Cry1Ab Bacillus thuringiensis (Bt) protein and control of the diamondback moth (DBM), Plutella xylostella L., in inducer-treated and untreated tissues of a broccoli line transformed with a PR-1a/cry1Ab expression cassette. Spraying leaves of these plants with the inducer acibenzolar-S-methyl (= 1,2,3 benzothiadiazole-7-thiocarboxylic acid-S-methyl-ester) (ASM) triggered expression of the cry1Ab gene and produced a high level of Cry1Ab protein within 2–3 days. Cry1Ab protein persisted in leaves for at least 8 weeks, providing prolonged protection from P. xylostella attack. Signals generated in inducer-treated leaves were transferred to untreated newly emerged leaves or heads, as seen by production of Cry1Ab protein and/or protection from insect damage in these plant parts. Signal transduction proceeded in an attenuated manner up to the sixth newly emerged leaf. No Cry1Ab protein was detectable by ELISA in uninduced young leaves, but small amounts of the protein were present in uninduced leaves older than 3 weeks and caused some insect mortality. Such basal expression of Bt genes without induction may favor the evolution of resistant insect populations and therefore limits the application of the PR-1a/cry1Ab system for insect management. However, the rapid production and steady maintenance of a high level of transgenic protein upon induction, the signal transduction observed, and the fact that the chemical inducer can be used in field conditions make the PR-1a promoter attractive for chemical regulation of other agriculturally or pharmaceutically important genes for which low expression in the absence of induction is not a concern.  相似文献   
189.
SPINDLY (SPY) gene encodes a putative O-linked N-acetyl-glucosamine transferase, and yeast two-hybrid assay identified GIGANTEA (GI) as a SPY-interacting partner in Arabidopsis. GIGANTEA gene was previously shown to be involved in the regulation of oxidative stress response; however, it is unclear whether SPY gene is also involved in oxidative stress response. Here we showed that SPY plays a role in the regulation of the oxidative stress response. The spy-1 mutant was more tolerant to paraquat (PQ)-or hydrogen peroxide (H2O2)-mediated oxidative stress than wild-type plants. Analyses of endogenous H2O2 and superoxide anion radicals as well as lipid peroxidation revealed that enhanced tolerance of the spy-1 mutant to PQ-stress was not due to defects in the PQ uptake or the PQ sequestration from its site of action but rather the spy-1 mutation alleviated oxidative damage of plant cells upon PQ stress. Higher constitutive activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in spy-1 are more likely to be due to activation of both CSD2 gene encoding chloroplast Cu/Zn SOD and APX1 gene. Taken together, these results suggest that enhanced tolerance of the spy-1 mutant to oxidative stress is associated, at least in part, with constitutive activation of CSD2 and APX1. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 4, pp. 604–611. The text was submitted by the authors in English.  相似文献   
190.
鸡胚胎原始生殖细胞体外培养   总被引:4,自引:0,他引:4  
以14-15期鸡胚血液为材料,采用Ficoll密度梯度离心方法,提取鸡胚胎原始生殖细胞(primordial germ cells,PGCs),在无基质细胞和基质细胞上分别进行体外培养。从实验结果可以看出:在含有胎牛血清(fetal bovine serum,FBS)、鸡血清(chicken serum,CS)、碱性成纤维细胞生长因子(bFGF)、人胰岛素样生长因子(hIGF-1)、小鼠白血病抑制因子(mLIF)和青,链霉素双抗的M199培养液中培养时,鸡PGCs最多能够存活4天:当采用细胞因子和5天鸡胚胎性腺基质细胞共培养时能存活23代且每代细胞增殖可达近10倍。提纯后的PGCs细胞冻存复苏后,经台盼蓝染色鉴定存活率可达80%左右。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号