全文获取类型
收费全文 | 10525篇 |
免费 | 830篇 |
国内免费 | 702篇 |
专业分类
12057篇 |
出版年
2024年 | 24篇 |
2023年 | 152篇 |
2022年 | 358篇 |
2021年 | 575篇 |
2020年 | 376篇 |
2019年 | 440篇 |
2018年 | 481篇 |
2017年 | 369篇 |
2016年 | 442篇 |
2015年 | 645篇 |
2014年 | 708篇 |
2013年 | 806篇 |
2012年 | 984篇 |
2011年 | 864篇 |
2010年 | 488篇 |
2009年 | 420篇 |
2008年 | 575篇 |
2007年 | 478篇 |
2006年 | 417篇 |
2005年 | 353篇 |
2004年 | 271篇 |
2003年 | 251篇 |
2002年 | 189篇 |
2001年 | 173篇 |
2000年 | 148篇 |
1999年 | 154篇 |
1998年 | 96篇 |
1997年 | 96篇 |
1996年 | 95篇 |
1995年 | 81篇 |
1994年 | 87篇 |
1993年 | 64篇 |
1992年 | 58篇 |
1991年 | 74篇 |
1990年 | 58篇 |
1989年 | 42篇 |
1988年 | 32篇 |
1987年 | 18篇 |
1986年 | 23篇 |
1985年 | 19篇 |
1984年 | 17篇 |
1983年 | 20篇 |
1982年 | 9篇 |
1981年 | 3篇 |
1980年 | 5篇 |
1975年 | 2篇 |
1973年 | 2篇 |
1971年 | 3篇 |
1968年 | 2篇 |
1966年 | 2篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Qiupeng Zheng Jing Du Zhaofeng Zhang Jianhua Xu Lingyuan Fu Yunlei Cao Xianliang Huang Lingli Guo 《Gene》2013
Vascular malformations (VMs) are common congenital and neonatal dysmorphogenesis. VMs mostly occur sporadically with a few exceptions of inheritability. Tie2/angiopoietins-2 (Ang-2) and VEGF/KDR pathways are known to be involved in normal and pathogenic angiogenesis. Our study was aimed to test the contribution of these pathway gene variants to VMs. A total of 8 variants were found among 103 VM patients and 142 healthy controls. These variants comprised rs638203, rs639225, rs80338908 and rs80338909 in Tie2 gene, rs1870377 and rs2305949 in KDR gene, rs79337921 and rs34590960 in ANTXR1 gene. Our results indicated that rs638203 (p = 0.029) and rs639225 (p = 0.018) in Tie2 gene were associated with VM. A further bioinformatics analysis suggested the rs638203-G and rs639225-G might cause an abnormal splicing of Tie2 gene into to a defective protein. Our results identified two novel Tie2 gene polymorphisms with genetic susceptibility to VMs, although future functional validation of the two polymorphisms is warranted in the future. 相似文献
72.
目的观察去泛素化酶RPN11和增殖相关核标记物Ki67在结直肠癌组织中的表达,研究其与结直肠癌肿瘤细胞增殖的相关性及与结直肠癌临床病理特征的关系。方法采用免疫组织化学SABC法检测56例结直癌组织及20例癌旁正常组织中的RPN11和Ki67表达,结合临床病理学资料进行统计分析。结果免疫组织化学染色显示:RPN11及Ki67在结直肠癌组织的阳性表达率明显高于正常结直肠组织;RPN11和Ki67的表达均与肿瘤分化程度、TNM分期、转移有关,而与性别、年龄无明显相关;RPN11与Ki67的表达呈正相关。结论RPN11和Ki67可能共同参与结直肠癌肿瘤细胞的增殖调控,并促进结直肠癌的发生发展以及浸润转移。 相似文献
73.
Flash photolysis investigations of horse heart metmyoglobin bound with NO (Mb(3+)NO) reveal the kinetics of water entry and binding to the heme iron. Photodissociation of NO leaves the sample in the dehydrated Mb(3+) (5-coordinate) state. After NO photolysis and escape, a water molecule enters the heme pocket and binds to the heme iron, forming the 6-coordinate aquometMb state (Mb(3+)H2O). At longer times, NO displaces the H2O ligand to reestablish equilibrium. At 293 K, we determine a value k(w) approximately 5.7 x 10(6) s(-1) for the rate of H2O binding and estimate the H2O dissociation constant as 60 mM. The Arrhenius barrier height H(w) = 42 +/- 3 kJ/mol determined for H2O binding is identical to the barrier for CO escape after photolysis of Mb(2+)CO, within experimental uncertainty, consistent with a common mechanism for entry and exit of small molecules from the heme pocket. We propose that both processes are gated by displacement of His-64 from the heme pocket. We also observe that the bimolecular NO rebinding rate is enhanced by 3 orders of magnitude both for the H64L mutant, which does not bind water, and for the H64G mutant, where the bound water is no longer stabilized by hydrogen bonding with His-64. These results emphasize the importance of the hydrogen bond in stabilizing H2O binding and thus preventing NO scavenging by ferric heme proteins at physiological NO concentrations. 相似文献
74.
75.
Choline kinase of rat brain was purified approximately 200,000 fold using acid precipitation, ammonium sulphate fractionation, Q-Sepharose, Octyl-Sepharose and AH-Sepharose chromatography. The ability of this enzyme to catalyze the phosphorylation of choline, ethanolamine (Etn), monomethylethanolamine (MeEtn), dimethylethanolamine (Me2Etn) and sphingosine was investigated. Choline kinase was separated from sphingosine kinase. The fraction with highly purified choline kinase had four major polypeptides with different molecular masses and possessed activities towards choline, Etn, MeEtn and Me2Etn. Two forms of choline kinase were obtained when the enzymatically active fractions eluted from the Q-Sepharose column were subjected to a horizontal isoelectrofocusing electrophoresis. One form focused around pH 4.7 and is able to phosphorylate choline, Etn, MeEtn and Me2Etn. The other form focused around pH 10 and possessed only choline kinase activity. The latter form of choline kinase did not display classical Michaelis-Menten's mechanism but revealed a positive co-operative pattern for two choline binding sites. This form was purified to apparent homogeneity with a approximate molecular mass of 14.4 kDa.Abbreviations Etn
ethanolamine
- MeEtn
N-monomethylethanolamine
- Me2Etn
N, N-dimethylethanolamine 相似文献
76.
W S Cook S Jain Y Jia W Q Cao A V Yeldandi J K Reddy M S Rao 《Experimental cell research》2001,268(1):70-76
Mice deficient in fatty acyl-CoA oxidase (AOX(-/-)), the first enzyme of the peroxisomal beta-oxidation system, develop specific morphological and molecular changes in the liver characterized by microvesicular fatty change, increased mitosis, spontaneous peroxisome proliferation, increased mRNA and protein levels of genes regulated by peroxisome proliferator-activated receptor alpha (PPARalpha), and hepatocellular carcinoma. Based on these findings it is proposed that substrates for AOX function as ligands for PPARalpha. In this study we examined the sequential changes in morphology and gene expression in the liver of wild-type and AOX(-/-) mice at Embryonic Day 17.5, and during postnatal development up to 2 months of age. In AOX(-/-) mice high levels of expression of PPARalpha-responsive genes in the liver commenced on the day of birth and persisted throughout the postnatal period. We found no indication of PPARalpha activation in the livers of AOX(-/-) mice at embryonic age E17.5. In AOX(-/-) mice microvesicular fatty change in liver cells was evident at 7 days. At 2 months of age livers showed extensive steatosis and the presence in the periportal areas of clusters of hepatocytes with abundant granular eosinophilic cytoplasm rich in peroxisomes. These results suggest that the biological ligands for PPARalpha vis a vis substrates for AOX either are not functional in fetal liver or do not cross the placental barrier during the fetal development and that postnatally they are likely derived from milk and diet. 相似文献
77.
78.
79.
80.
Fu-Zheng Wei Ziyang Cao Xi Wang Hui Wang Mu-Yan Cai Tingting Li Naoko Hattori Donglai Wang Yipeng Du Boyan Song Lin-Lin Cao Changchun Shen Lina Wang Haiying Wang Yang Yang Dan Xie Fan Wang Toshikazu Ushijima Ying Zhao Wei-Guo Zhu 《Autophagy》2015,11(12):2309-2322
Macroautophagy is an evolutionarily conserved cellular process involved in the clearance of proteins and organelles. Although the autophagy regulation machinery has been widely studied, the key epigenetic control of autophagy process still remains unknown. Here we report that the methyltransferase EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) epigenetically represses several negative regulators of the MTOR (mechanistic target of rapamycin [serine/threonine kinase]) pathway, such as TSC2, RHOA, DEPTOR, FKBP11, RGS16 and GPI. EZH2 was recruited to these genes promoters via MTA2 (metastasis associated 1 family, member 2), a component of the nucleosome remodeling and histone deacetylase (NuRD) complex. MTA2 was identified as a new chromatin binding protein whose association with chromatin facilitated the subsequent recruitment of EZH2 to silenced targeted genes, especially TSC2. Downregulation of TSC2 (tuberous sclerosis 2) by EZH2 elicited MTOR activation, which in turn modulated subsequent MTOR pathway-related events, including inhibition of autophagy. In human colorectal carcinoma (CRC) tissues, the expression of MTA2 and EZH2 correlated negatively with expression of TSC2, which reveals a novel link among epigenetic regulation, the MTOR pathway, autophagy induction, and tumorigenesis. 相似文献