首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3912篇
  免费   264篇
  国内免费   1篇
  2022年   31篇
  2021年   45篇
  2020年   35篇
  2019年   47篇
  2018年   66篇
  2017年   65篇
  2016年   110篇
  2015年   171篇
  2014年   173篇
  2013年   275篇
  2012年   301篇
  2011年   260篇
  2010年   201篇
  2009年   159篇
  2008年   245篇
  2007年   217篇
  2006年   211篇
  2005年   178篇
  2004年   186篇
  2003年   185篇
  2002年   168篇
  2001年   39篇
  2000年   48篇
  1999年   40篇
  1998年   54篇
  1997年   38篇
  1996年   35篇
  1995年   44篇
  1994年   35篇
  1993年   32篇
  1992年   27篇
  1991年   28篇
  1990年   38篇
  1989年   29篇
  1988年   21篇
  1987年   19篇
  1986年   15篇
  1985年   26篇
  1984年   31篇
  1983年   27篇
  1982年   22篇
  1981年   30篇
  1980年   12篇
  1979年   14篇
  1978年   15篇
  1977年   13篇
  1975年   18篇
  1973年   9篇
  1971年   10篇
  1967年   9篇
排序方式: 共有4177条查询结果,搜索用时 607 毫秒
161.
Durum wheat (Triticum turgidum subsp. durum) is a key crop worldwide, and yet, its improvement and adaptation to emerging environmental threats is made difficult by the limited amount of allelic variation included in its elite pool. New allelic diversity may provide novel loci to international crop breeding through quantitative trait loci (QTL) mapping in unexplored material. Here, we report the extensive molecular and phenotypic characterization of hundreds of Ethiopian durum wheat landraces and several Ethiopian improved lines. We test 81 587 markers scoring 30 155 single nucleotide polymorphisms and use them to survey the diversity, structure, and genome‐specific variation in the panel. We show the uniqueness of Ethiopian germplasm using a siding collection of Mediterranean durum wheat accessions. We phenotype the Ethiopian panel for ten agronomic traits in two highly diversified Ethiopian environments for two consecutive years and use this information to conduct a genome‐wide association study. We identify several loci underpinning agronomic traits of interest, both confirming loci already reported and describing new promising genomic regions. These loci may be efficiently targeted with molecular markers already available to conduct marker‐assisted selection in Ethiopian and international wheat. We show that Ethiopian durum wheat represents an important and mostly unexplored source of durum wheat diversity. The panel analysed in this study allows the accumulation of QTL mapping experiments, providing the initial step for a quantitative, methodical exploitation of untapped diversity in producing a better wheat.  相似文献   
162.
The Ethiopian plateau hosts thousands of durum wheat (Triticum turgidum subsp. durum) farmer varieties (FV) with high adaptability and breeding potential. To harness their unique allelic diversity, we produced a large nested association mapping (NAM) population intercrossing fifty Ethiopian FVs with an international elite durum wheat variety (Asassa). The Ethiopian NAM population (EtNAM) is composed of fifty interconnected bi‐parental families, totalling 6280 recombinant inbred lines (RILs) that represent both a powerful quantitative trait loci (QTL) mapping tool, and a large pre‐breeding panel. Here, we discuss the molecular and phenotypic diversity of the EtNAM founder lines, then we use an array featuring 13 000 single nucleotide polymorphisms (SNPs) to characterize a subset of 1200 EtNAM RILs from 12 families. Finally, we test the usefulness of the population by mapping phenology traits and plant height using a genome wide association (GWA) approach. EtNAM RILs showed high allelic variation and a genetic makeup combining genetic diversity from Ethiopian FVs with the international durum wheat allele pool. EtNAM SNP data were projected on the fully sequenced AB genome of wild emmer wheat, and were used to estimate pairwise linkage disequilibrium (LD) measures that reported an LD decay distance of 7.4 Mb on average, and balanced founder contributions across EtNAM families. GWA analyses identified 11 genomic loci individually affecting up to 3 days in flowering time and more than 1.6 cm in height. We argue that the EtNAM is a powerful tool to support the production of new durum wheat varieties targeting local and global agriculture.  相似文献   
163.
Relatively little is known about the genetic aberrations of conjunctival melanomas (CoM) and their correlation with clinical and histomorphological features as well as prognosis. The aim of this large collaborative multicenter study was to determine potential key biomarkers for metastatic risk and any druggable targets for high metastatic risk CoM. Using Affymetrix single nucleotide polymorphism genotyping arrays on 59 CoM, we detected frequent amplifications on chromosome (chr) 6p and deletions on 7q, and characterized mutation‐specific copy number alterations. Deletions on chr 10q11.21‐26.2, a region harboring the tumor suppressor genes, PDCD4, SUFU, NEURL1, PTEN, RASSF4, DMBT1, and C10orf90 and C10orf99, significantly correlated with metastasis (Fisher's exact, p ≤ 0.04), lymphatic invasion (Fisher's exact, p ≤ 0.02), increasing tumor thickness (Mann–Whitney, p ≤ 0.02), and BRAF mutation (Fisher's exact, p ≤ 0.05). This enhanced insight into CoM biology is a step toward identifying patients at risk of metastasis and potential therapeutic targets for systemic disease.  相似文献   
164.
Free‐living amoebae (FLAs) are major reservoirs for a variety of bacteria, viruses, and fungi. The most studied mycophagic FLA, Acanthamoeba castellanii (Ac), is a potential environmental host for endemic fungal pathogens such as Cryptococcus spp., Histoplasma capsulatum, Blastomyces dermatitides, and Sporothrix schenckii. However, the mechanisms involved in this interaction are poorly understood. The aim of this work was to characterize the molecular instances that enable Ac to interact with and ingest fungal pathogens, a process that could lead to selection and maintenance of possible virulence factors. The interaction of Ac with a variety of fungal pathogens was analysed in a multifactorial evaluation that included the role of multiplicity of infection over time. Fungal binding to Ac surface by living image consisted of a quick process, and fungal initial extrusion (vomocytosis) was detected from 15 to 80 min depending on the organism. When these fungi were cocultured with the amoeba, only Candida albicans and Cryptococcus neoformans were able to grow, whereas Paracoccidioides brasiliensis and Sporothrix brasiliensis displayed unchanged viability. Yeasts of H. capsulatum and Saccharomyces cerevisiae were rapidly killed by Ac; however, some cells remained viable after 48 hr. To evaluate changes in fungal virulence upon cocultivation with Ac, recovered yeasts were used to infect Galleria mellonella, and in all instances, they killed the larvae faster than control yeasts. Surface biotinylated extracts of Ac exhibited intense fungal binding by FACS and fluorescence microscopy. Binding was also intense to mannose, and mass spectrometry identified Ac proteins with affinity to fungal surfaces including two putative transmembrane mannose‐binding proteins (MBP, L8WXW7 and MBP1, Q6J288). Consistent with interactions with such mannose‐binding proteins, Ac–fungi interactions were inhibited by mannose. These MBPs may be involved in fungal recognition by amoeba and promotes interactions that allow the emergence and maintenance of fungal virulence for animals.  相似文献   
165.
During the breeding season, seabird foraging trips are constrained by nest attendance schedule and are necessarily colony centred. Oceanographic cues play a major role in the choice of foraging areas to minimize the time spent away from the nest. Here, we analysed the foraging tracks of Black-vented Shearwaters Puffinus opisthomelas during the incubation and chick-rearing periods of 2016 and 2017 at Isla Natividad (Mexico). We applied expectation-maximization binary clustering to track data to clusterize different behaviour patterns during foraging flights. We then applied binary generalized linear mixed models to characterize of foraging areas based on of environmental variables. We finally used kernel estimation techniques to describe main foraging areas. In 2016, breeding shearwaters used two core areas for foraging and resting on the water; the core area delineated by males was located northward from the colony in the Vizcaino Bay and the core area for females was located southward from the colony at the entrance of San Ignacio Lagoon. In 2017, males and females used the same areas with no evident segregation. Our study provided the first information on Black-vented Shearwater foraging areas during the breeding season and indicated that sexual segregation within coastal waters off the central Baja California Peninsula might be a foraging strategy during years of warmer ocean, likely less productive regimes. Factors including ocean-climate-mediated sexual segregation at sea, leading to interannual variation in foraging areas, should be considered when evaluating management actions intended to protect critical foraging habitats for Black-vented Shearwaters.  相似文献   
166.
Alcoholic patients and experimental animals exposed to ethanol display biochemical signs of oxidative damage, suggesting a possible role of free radicals in causing some of the toxic effects of alcohol. The ester derivative, ethyl pyruvate (EP) is stable in solution and should function as an antioxidant and energy precursor. In the present study, the effect of ethanol intake on plasma membrane fluidity, lipid oxidation and antioxidant enzyme activities (GPx, CAT and SOD) were first evaluated. Secondly, the consequences of ethyl pyruvate treatment on the physico-chemical properties of erythrocyte plasma membranes were investigated. The results obtained demonstrate that ethanol induces an increase in lipid peroxidation, a reduction of GPx activity and fluidity in the hydrophilic-hydrophobic region of the bilayer, moreover an increase of fluidity in hydrophobic part of the plasma membrane was measured. When rats were treated with ethyl pyruvate a partially protective effect can be observed for the hydrophilic-hydrophobic region tested by Laurdan, while EP cannot restore the DPH anisotropy values to the control values. In summary, our data indicate that treatment with EP can only partially reduce ethanol plasma membrane perturbation. Since this study shows an ethyl pyruvate dose-dependent effect, it is important to consider the amount of EP required to maintain the right level of membrane fluidity and polarity. These results could be interesting in order to investigate if EP, due to its radical scavenging effect, can prevent oxidative damage induced by ethanol intake and can protect against injure related with ethanol intake.  相似文献   
167.
An important question in protein folding is whether the folding mechanism is sequence dependent and conserved for homologous proteins. In this work we compared the kinetic folding mechanism of five postsynaptic density protein-95, disc-large tumor suppressor protein, zonula occludens-1 (PDZ) domains, sharing similar topology but having different primary structures. Investigation of the different proteins under various experimental conditions revealed that the folding kinetics of each member of the PDZ family can be described by a model with two transition states separated by an intermediate. Moreover, the positions of the two transition states along the reaction coordinate (as given by their beta(T)-values) are fairly constant for the five PDZ domains.  相似文献   
168.
Rago C  Vogelstein B  Bunz F 《Nature protocols》2007,2(11):2734-2746
Gene targeting by homologous recombination with exogenous DNA constructs is the most powerful technique available for analysis of mammalian gene function. Over the past several years, the methods used to generate knockout and knockin mice have been modified for use in cultured human cells. The most significant innovation has been the adaptation of recombinant adeno-associated viruses (rAAVs) for such targeting. The stages of rAAV-mediated gene targeting include (i) the design and construction of a DNA targeting vector, (ii) the production of an infectious rAAV stock, (iii) the generation of cell clones that harbor rAAV transgenes, (iv) screening for homologous recombinants and (v) the iterative targeting of multiple alleles. The protocol described herein allows the generation of a cell line with a single altered allele in 3 months. A second allele of the same gene can be targeted in an additional 3 months.  相似文献   
169.
Hyperpolarization-activated cyclic nucleotide-sensitive (HCN) channels mediate the I(f) current in heart and I(h) throughout the nervous system. In spiking neurons I(h) participates primarily in different forms of rhythmic activity. Little is known, however, about its role in neurons operating with graded potentials as in the retina, where all four channel isoforms are expressed. Intriguing evidence for an involvement of I(h) in early visual processing are the side effects reported, in dim light or darkness, by cardiac patients treated with HCN inhibitors. Moreover, electroretinographic recordings indicate that these drugs affect temporal processing in the outer retina. Here we analyzed the functional role of HCN channels in rod bipolar cells (RBCs) of the mouse. Perforated-patch recordings in the dark-adapted slice found that RBCs exhibit I(h), and that this is sensitive to the specific blocker ZD7288. RBC input impedance, explored by sinusoidal frequency-modulated current stimuli (0.1-30 Hz), displays band-pass behavior in the range of I(h) activation. Theoretical modeling and pharmacological blockade demonstrate that high-pass filtering of input signals by I(h), in combination with low-pass filtering by passive properties, fully accounts for this frequency-tuning. Correcting for the depolarization introduced by shunting through the pipette-membrane seal, leads to predict that in darkness I(h) is tonically active in RBCs and quickens their responses to dim light stimuli. Immunohistochemistry targeting candidate subunit isoforms HCN1-2, in combination with markers of RBCs (PKC) and rod-RBC synaptic contacts (bassoon, mGluR6, Kv1.3), suggests that RBCs express HCN2 on the tip of their dendrites. The functional properties conferred by I(h) onto RBCs may contribute to shape the retina's light response and explain the visual side effects of HCN inhibitors.  相似文献   
170.
Multiple genome screens have been performed to identify regions in linkage or association with Multiple Sclerosis (MS, OMIM 126200), but little overlap has been found among them. This may be, in part, due to a low statistical power to detect small genetic effects and to genetic heterogeneity within and among the studied populations. Motivated by these considerations, we studied a very special population, namely that of Nuoro, Sardinia, Italy. This is an isolated, old, and genetically homogeneous population with high prevalence of MS. Our study sample includes both nuclear families and unrelated cases and controls. A multi-stage study design was adopted. In the first stage, microsatellites were typed in the 17q11.2 region, previously independently found to be in linkage with MS. One significant association was found at microsatellite D17S798. Next, a bioinformatic screening of the region surrounding this marker highlighted an interesting candidate MS susceptibility gene: the Amiloride-sensitive Cation Channel Neuronal 1 (ACCN1) gene. In the second stage of the study, we resequenced the exons and the 3' untranslated (UTR) region of ACCN1, and investigated the MS association of Single Nucleotide Polymorphisms (SNPs) identified in that region. For this purpose, we developed a method of analysis where complete, phase-solved, posterior-weighted haplotype assignments are imputed for each study individual from incomplete, multi-locus, genotyping data. The imputed assignments provide an input to a number of proposed procedures for testing association at a microsatellite level or of a sequence of SNPs. These include a Mantel-Haenszel type test based on expected frequencies of pseudocase/pseudocontrol haplotypes, as well as permutation based tests, including a combination of permutation and weighted logistic regression analysis. Application of these methods allowed us to find a significant association between MS and the SNP rs28936 located in the 3' UTR segment of ACCN1 with p = 0.0004 (p = 0.002, after adjusting for multiple testing). This result is in tune with several recent experimental findings which suggest that ACCN1 may play an important role in the pathogenesis of MS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号