首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   44篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   6篇
  2014年   7篇
  2013年   13篇
  2012年   16篇
  2011年   19篇
  2010年   7篇
  2009年   3篇
  2008年   4篇
  2007年   10篇
  2006年   12篇
  2005年   15篇
  2004年   16篇
  2003年   12篇
  2002年   11篇
  2001年   11篇
  2000年   13篇
  1999年   17篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   8篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1987年   7篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   1篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1973年   1篇
排序方式: 共有303条查询结果,搜索用时 15 毫秒
61.
Risk assessment for the deliberate release of microorganisms into the environment is traditionally carried out on a case-by-case basis. In a similar approach to that used when assessing human pathogenicity, we propose an alternative approach by introducing risk classes to facilitate or complement this type of risk assessment. These consider several sets of scenarios that address the different values that need to be protected. Examples of this approach include risk-class definitions for soil fertility and biodiversity.  相似文献   
62.

Background  

C. elegans TGF-β-like Sma/Mab signaling pathway regulates both body size and sensory ray patterning. Most of the components in this pathway were initially identified by genetic screens based on the small body phenotype, and many of these mutants display sensory ray patterning defect. At the cellular level, little is known about how and where these components work although ray structural cell has been implicated as one of the targets. Based on the specific ray patterning abnormality, we aim to identify by RNAi approach additional components that function specifically in the ray lineage to elucidate the regulatory role of TGF-β signaling in ray differentiation.  相似文献   
63.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of multiple fluid-filled cysts that expand over time and destroy the renal architecture. Loss or mutation of polycystin-1 or polycystin-2, the respective proteins encoded by the ADPKD genes PKD1 and PKD2, is associated with most cases of ADPKD. Thus, the polycystin proteins likely play a role in cell proliferation and morphogenesis. Recent studies indicate that polycystin-1 is involved in these processes, but little is known about the role played by polycystin-2. To address this question, we created a number of related cell lines variable in their expression of polycystin-2. We show that the basal and epidermal growth factor-stimulated rate of cell proliferation is higher in cells that do not express polycystin-2 versus those that do, indicating that polycystin-2 acts as a negative regulator of cell growth. In addition, cells not expressing polycystin-2 exhibit significantly more branching morphogenesis and multicellular tubule formation under basal and hepatocyte growth factor-stimulated conditions than their polycystin-2-expressing counterparts, suggesting that polycystin-2 may also play an important role in the regulation of tubulogenesis. Cells expressing a channel mutant of polycystin-2 proliferated faster than those expressing the wild-type protein, but exhibited blunted tubule formation. Thus, the channel activity of polycystin-2 may be an important component of its regulatory machinery. Finally, we show that polycystin-2 regulation of cell proliferation appears to be dependent on its ability to prevent phosphorylated extracellular-related kinase from entering the nucleus. Our results indicate that polycystin-2 is necessary for the proper growth and differentiation of kidney epithelial cells and suggest a possible mechanism for the cyst formation seen in ADPKD2.  相似文献   
64.
The ATP-dependent proton pump which was previously identified in clathrin-coated vesicles isolated from calf brain (Forgac, M., Cantley, L., Wiedenmann, B., Altstiel, L., and Branton, D. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 1300-1303) is further characterized. 7-Chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) was identified as a potent inhibitor of both ATP-dependent proton uptake and Mg2+-ATPase activity of coated vesicles. Thus, incubation with 10 microM NBD-Cl for 10 min at 23 degrees caused the loss of 80% of the Mg2+-ATPase activity and 95% of the proton pumping activity. The observed protection from NBD-Cl inhibition by ATP suggests that NBD-Cl may react at the catalytic site, and reversal of NBD-Cl inhibition by 2-mercaptoethanol is consistent with reaction at either a tyrosine or cysteine residue. In addition, no stable phosphorylated intermediate was observed during turnover of the coated vesicle proton pump and neither Na+ nor K+ was countertransported by the pump during ATP-dependent proton uptake.  相似文献   
65.
James Cantley 《Mammalian genome》2014,25(9-10):442-454
Metabolic homeostasis is maintained by the coordinated action of multiple organ systems. Insulin secretion is often enhanced during obesity or insulin resistance to maintain glucose and lipid homeostasis, whereas a loss of insulin secretion is associated with type 2 diabetes. Adipocytes secrete hormones known as adipokines which act on multiple cell types to regulate metabolism. Many adipokines have been shown to influence beta cell function by enhancing or inhibiting insulin release or by influencing beta cell survival. Insulin, in turn, regulates lipolysis and promotes glucose uptake and lipid storage in adipocytes. As adipokine secretion and action is strongly influenced by obesity, this provides a potential route by which beta cell function is coordinated with adiposity, independently of alterations in blood glucose or lipid levels. In this review, I assess the evidence for the direct regulation of beta cell function by the adipokines leptin, adiponectin, extracellular nicotinamide phosphoribosyltransferase, apelin, resistin, retinol binding protein 4, fibroblast growth factor 21, nesfatin-1 and fatty acid binding protein 4. I summarise in vitro and in vivo data and discuss the influence of obesity and diabetes on circulating adipokine concentrations, along with the potential for influencing beta cell function in human physiology. Finally, I highlight future research questions that are likely to yield new insights into the exciting field of insulinotropic adipokines.  相似文献   
66.
Covalent modification provides a mechanism for modulating molecular state and regulating physiology. A cycle of competing enzymes that add and remove a single modification can act as a molecular switch between “on” and “off” and has been widely studied as a core motif in systems biology. Here, we exploit the recently developed “linear framework” for time scale separation to determine the general principles of such switches. These methods are not limited to Michaelis-Menten assumptions, and our conclusions hold for enzymes whose mechanisms may be arbitrarily complicated. We show that switching efficiency improves with increasing irreversibility of the enzymes and that the on/off transition occurs when the ratio of enzyme levels reaches a value that depends only on the rate constants. Fluctuations in enzyme levels, which habitually occur due to cellular heterogeneity, can cause flipping back and forth between on and off, leading to incoherent mosaic behavior in tissues, that worsens as switching becomes sharper. This trade-off can be circumvented if enzyme levels are correlated. In particular, if the competing catalytic domains are on the same protein but do not influence each other, the resulting bifunctional enzyme can switch sharply while remaining coherent. In the mammalian liver, the switch between glycolysis and gluconeogenesis is regulated by the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). We suggest that bifunctionality of PFK-2/FBPase-2 complements the metabolic zonation of the liver by ensuring coherent switching in response to insulin and glucagon.  相似文献   
67.
Goodpasture syndrome is an autoimmune disease of the kidneys and lungs mediated by antibodies and T-cells directed to cryptic epitopes hidden within basement membrane hexamers rich in alpha3 non-collagenous globular (NC1) domains of type IV collagen. These epitopes are normally invisible to the immune system, but this privilege can be obviated by chemical modification. Endogenous drivers of immune activation consequent to the loss of privilege have long been suspected. We have examined the ability of reactive oxygen species (ROS) to expose Goodpasture epitopes buried within NC1 hexamers obtained from renal glomeruli abundant in alpha3(IV) NC1 domains. For some hexameric epitopes, like the Goodpasture epitopes, exposure to ROS specifically enhanced recognition by Goodpasture antibodies in a sequential and time-dependent fashion; control binding of epitopes to alpha3(IV) alloantibodies from renal transplant recipients with Alport syndrome was decreased, whereas epitope binding to heterologous antibodies recognizing all alpha3 NC1 epitopes remained the same. Inhibitors of hydrogen peroxide and hydroxyl radical scavengers were capable of attenuating the effects of ROS in cells and kidney by 30-50%, respectively, thereby keeping the Goodpasture epitopes largely concealed when compared with a 70% maximum inhibition by iron chelators. Hydrogen peroxide administration to rodents was sufficient to expose Goodpasture epitope in vivo and initiate autoantibody production. Our findings collectively suggest that ROS can alter the hexameric structure of type IV collagen to expose or destroy selectively immunologic epitopes embedded in basement membrane. The reasons for autoimmunity in Goodpasture syndrome may lie in an age-dependent deterioration in inhibitor function modulating oxidative damage to structural molecules. ROS therefore may play an important role in shaping post-translational epitope diversity or neoantigen formation in organ tissues.  相似文献   
68.
The ataxia telangiectasia mutated (ATM) gene encodes a serine/threonine protein kinase that plays a critical role in genomic surveillance and development. Here, we use a peptide library approach to define the in vitro substrate specificity of ATM kinase activity. The peptide library analysis identified an optimal sequence with a central core motif of LSQE that is preferentially phosphorylated by ATM. The contributions of the amino acids surrounding serine in the LSQE motif were assessed by utilizing specific peptide libraries or individual peptide substrates. All amino acids comprising the LSQE sequence were critical for maximum peptide substrate suitability for ATM. The DNA-dependent protein kinase (DNA-PK), a Ser/Thr kinase related to ATM and important in DNA repair, was compared with ATM in terms of peptide substrate selectivity. DNA-PK was found to be unique in its preference of neighboring amino acids to the phosphorylated serine. Peptide library analyses defined a preferred amino acid motif for ATM that permits clear distinctions between ATM and DNA-PK kinase activity. Data base searches using the library-derived ATM sequence identified previously characterized substrates of ATM, as well as novel candidate substrate targets that may function downstream in ATM-directed signaling pathways.  相似文献   
69.
Ninety-nine sexually mature, non-pregnant gilts were checked for estrus daily with a mature boar and then allocated at estrus (D O) to receive 2 kg/d of a diet containing 0, 1, 5 or 10 ppm purified zearalenone between D 5 and 20 of the estrous cycle during two seasons of the year (winter and summer). None of the gilts exhibited any visual signs of "hyperestrogenism" and there was no effect of season on interestrous interval (P > 0.05). A significant effect of zearalenone dose on inter-estrous interval was detected (P < 0.001). Gilts receiving 0 or 1 ppm had similar inter-estrous intervals (21.0 +/- 0.3 and 21.5 +/- 0.8 d, respectively) whereas gilts receiving 5 and 10 ppm had extended cycles (29.2 +/- 2.9 and 32.7 +/- 3.3 d, respectively). Plasma progesterone concentrations at D 19 to 21 were higher in gilts with extended cycles (P < 0.001) and corpora lutea (CL) were present at laparotomy. Some 86% of these retained CL underwent spontaneous regression resulting in the onset of estrus within the next 30 d. Fecal zearalenone concentrations rose during ingestion of contaminated diets and declined to pretreatment values within 2 d (1 ppm) to 8 d (10 ppm) of the cessation of treatment. These data show that feeding zearalenone at concentrations of 5 to 10 ppm from D 5 to 20 of the estrous cycle causes luteal maintenance and extended inter-estrous intervals. Spontaneous regression of these CL usually occurs within 30 d after zearalenone is removed from the diet. Fecal zearalenone analysis does not appear to be an effective method for determining prior exposure to zearalenone when carried out more than a few days following the last ingestion of zearalenone.  相似文献   
70.
The stilbenedisulfonate inhibitory site of the human erythrocyte anion-exchange system has been characterized by using serveral fluorescent stilbenedisulfonates. The covalent inhibitor 4-benzamido-4'-isothiocyanostilbene-2,2'-disulfonate (BIDS) reacts specifically with the band 3 protein of the plasma membrane when added to intact erythrocytes, and the reversible inhibitors 4,4'-dibenzamidostilbene-2,2'-disulfonate (DBDS) and 4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS) show a fluorescence enhancement upon binding to the inhibitory site on erythrocyte ghosts. The fluorescence properties of all three bound probes indicate a rigid, hydrophobic site with nearby tryptophan residues. The Triton X-100 solublized and purified band 3 protein has similar affinities for DBDS, BADS, and 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) to those observed on intact erythrocytes and erythrocyte ghosts, showing that the anion binding site is not perturbed by the solubilization procedure. The distance between the stilbenedisulfonate binding site and a group of cysteine residues on the 40 000-dalton amino-terminal cytoplasmic domain of band 3 was measured by the fluorescence resonance energy transfer technique. Four different fluorescent sulfhydryl reagents were used as either energy transfer donors or energy transfer acceptors in combination with the stilbenedisulfonates (BIDS, DBDS, BADS, and DNDS). Efficiencies of transfer were measured by sensitized emisssion, donor quenching, and donor lifetime changes. Although these sites are approachable from opposite sides of the membrane by impermeant reagents, they are separated by only 34--42 A, indicating that the anion binding site is located in a protein cleft which extends some distance into the membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号