首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   6篇
  国内免费   4篇
  141篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   8篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
  1955年   1篇
  1954年   4篇
  1950年   1篇
  1934年   1篇
  1916年   1篇
  1906年   1篇
  1905年   1篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
101.
Abstract

The palatability to common carp, Cyprinus carpio L. of three newly developed differently flavoured floating pellets made from a high proportion (40%) of brewer's spent grain (BSG) was tested using a multiple-offer feeding experiment. The addition of ‘bold’ flavours, such as vanilla or strawberry essence, may help mask the unpleasant taste of some piscicides; however, their inclusion must not compromise uptake by carp. There were no significant differences between the consumption rates of the three varieties, and all flavours were readily consumed. Therefore, it is suggested that highly flavoured pellets made with BSG have a strong potential to mask the flavour of an unpalatable toxin, and further research is now needed to test this hypothesis.  相似文献   
102.
Neurons have an enormous capacity to adapt to changing conditions through the regulation of gene expression, morphology, and physiology. In the fruit fly Drosophila melanogaster, this plasticity includes recurrent changes taking place within intervals of a few hours during the day. The rhythmic alterations in the morphology of neurons described so far include changes in axonal diameter, branching complexity, synapse numbers, and the number of synaptic vesicles. The cycles of these changes have larger amplitude when the fly is exposed to light, but they persist in constant darkness and require the expression of the clock genes period and timeless, leading to the concept of circadian plasticity. The molecular mechanisms driving these cycles appear to require the expression of these genes either inside the neurons themselves or in other peripheral pacemaker cells. Loss-of-function mutations in period and timeless not only abolish the morphological rhythms, but also often cause abnormal axonal branching suggesting that circadian plasticity is relevant for the maintenance of normal morphology. Research into whether (1) circadian plasticity is a common feature of neurons in all animals and (2) our own neurons change shape between day and night will be of interest.  相似文献   
103.
Mt. Makiling Mudspring in Laguna, Philippines is a thermophilic, acidophilic environment that previously has been shown to harbor novel microorganisms. We assessed the microbial community that exists at this volcanic mudspring using 16S rRNA-based approaches. DNA was extracted from solfataric soils and sediments taken from Mudspring. The 16S rDNA was PCR amplified using universal (519F-1392R) and archaeal-specific (23FPL-1391R) primer pairs, cloned, and sequenced. Phylogenetic analysis of the cloned 16S rDNA showed that eleven clones clustered with, and therefore related to Sulfolobus tokodaii 7 and two clones clustered with S. solfataricu, S. shibatae and S. islandicus. Three clone sequences were related to those found in thermophilic chalcopyrite (CuFeS2), a copper sulfuric ore from bioleaching reactors. One clone had low similarity (95% identity) with uncultured archaeon clone KOZ184. Fluorescence in situ hybridization (FISH) analysis revealed that about 71% of the microbial community present in the Mudspring belong to domain Archaea of which 63% were Crenarchaeota and 8% were Euryarchaeota. Seventeen percent (17%) of the population consisted of bacteria as indicated by the positive hybridization with the BACT338 probe, and the remaining 12% are unidentified. This study is the first attempt to use molecular techniques in any environment in the Philippines.  相似文献   
104.
We investigated the effects of Nigella sativa on apoptosis and gamma-aminobutyric acid (GABAA) receptor density in cerebral cortical and hippocampal neurons in a pentylenetetrazol (PTZ)-induced kindling model in rats. The PTZ kindling model was produced by injecting PTZ in subconvulsive doses to rats on days 1, 3, 5, 8, 10, 12, 15, 17, 19, 22 and 24 of the study into animals of PTZ treated (PTZ) and PTZ + N. sativa treated (PTZ + NS) groups. Clonic and tonic seizures were induced by injecting a convulsive dose of PTZ on day 26 of the study. Rats in the PTZ + NS group were treated also with a 10 mg/kg methanolic extract of N. sativa 2 h before each PTZ injection. Rats in the control group were treated with 4 ml/kg saline. The number of neurons that expressed GABAA receptors in the hippocampus and cerebral cortex of rats in the PTZ and PTZ + NS groups increased significantly. There was no significant difference in the number of GABAA receptors between the PTZ and PTZ + NS groups. GABAA receptor density of the neurons in the cerebral cortex, but not hippocampus, was increased in PTZ group compared to controls. We observed a significant increase in the number of apoptotic neurons in the cerebral cortex of rats of both the PTZ and PTZ + NS groups compared to controls. We observed a significant decrease in the number of the apoptotic neurons in the cerebral cortex of rats in the PTZ + NS group compared to the PTZ group. N. sativa treatment ameliorated the PTZ induced neurodegeneration in the cerebral cortex as reflected by neuronal apoptosis and neuronal GABAA receptor frequency.  相似文献   
105.

Background

Inhaled short acting β2-agonists (SABA), e.g. albuterol, are used for quick reversal of bronchoconstriction in asthmatics. While SABA are not recommended for maintenance therapy, it is not uncommon to find patients who frequently use SABA over a long period of time and there is a suspicion that long term exposure to SABA could be detrimental to lung function. To test this hypothesis we studied the effect of long-term inhaled albuterol stereoisomers on immediate allergic response (IAR) and airway hyperresponsiveness (AHR) in mouse models of asthma.

Methods

Balb/C mice were sensitized and challenged with ovalbumin (OVA) and then we studied the IAR to inhaled allergen and the AHR to inhaled methacholine. The mice were pretreated with nebulizations of either racemic (RS)-albuterol or the single isomers (S)- and (R)-albuterol twice daily over 7 days prior to harvest.

Results

We found that all forms of albuterol produced a significant increase of IAR measured as respiratory elastance. Similarly, we found that AHR was elevated by albuterol. At the same time a mouse strain that is intrinsically hyperresponsive (A/J mouse) was not affected by the albuterol isomers nor was AHR induced by epithelial disruption with Poly-L-lysine affected by albuterol.

Conclusions

We conclude that long term inhalation treatment with either isomer of albuterol is capable of precipitating IAR and AHR in allergically inflamed airways but not in intrinsically hyperresponsive mice or immunologically naïve mice. Because (S)-albuterol, which lacks affinity for the β2-receptor, did not differ from (R)-albuterol, we speculate that isomer-independent properties of the albuterol molecule, other than β2-agonism, are responsible for the effect on AHR.  相似文献   
106.
The cellular architecture of tubular organs suggests striking similarities in the mechanisms of tubulogenesis between species. The formation of the Drosophila respiratory organ (trachea) highlights the basic principles of branch patterning and tube growth that generate a highly elaborate but stereotyped epithelial tubular network. Oriented cell migration, changes in cell shape, selective growth of the apical cell membrane and intracellular lumen formation are essential events in this process. These morphogenetic processes build four structurally distinct classes of tubes that facilitate optimal airflow and gas exchange with target tissues. The molecular players in these plots include attractant and repellent signals, differentiation factors that cause a high diversity of cell fates within the epithelium, and determinants of tube formation and dimensions.  相似文献   
107.
108.
109.

Background

A functional link has been established between the severe neurodegenerative disorder Familial amyloidotic polyneuropathy and the enhanced propensity of the plasma protein transthyretin (TTR) to form aggregates in patients with single point mutations in the TTR gene. Previous work has led to the establishment of an experimental model based on transgenic expression of normal or mutant forms of human TTR in Drosophila flies. Remarkably, the severity of the phenotype was greater in flies that expressed a single copy than with two copies of the mutated gene.

Methodology/Principal Findings

In this study, we analyze the distribution of normal and mutant TTR in transgenic flies, and the ultrastructure of TTR-positive tissues to clarify if aggregates and/or amyloid filaments are formed. We report the formation of intracellular aggregates of 20 nm spherules and amyloid filaments in thoracic adipose tissue and in brain glia, two tissues that do not express the transgene. The formation of aggregates of nanospherules increased with age and was more considerable in flies with two copies of mutated TTR. Treatment of human neuronal cells with protein extracts prepared from TTR flies of different age showed that the extracts from older flies were less toxic than those from younger flies.

Conclusions/Significance

These findings suggest that the uptake of TTR from the circulation and its subsequent segregation into cytoplasmic quasi-crystalline arrays of nanospherules is part of a mechanism that neutralizes the toxic effect of TTR.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号