首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   632篇
  免费   81篇
  2022年   5篇
  2021年   14篇
  2020年   9篇
  2019年   18篇
  2018年   13篇
  2017年   13篇
  2016年   17篇
  2015年   37篇
  2014年   36篇
  2013年   30篇
  2012年   51篇
  2011年   36篇
  2010年   24篇
  2009年   25篇
  2008年   32篇
  2007年   27篇
  2006年   30篇
  2005年   28篇
  2004年   35篇
  2003年   16篇
  2002年   19篇
  2001年   5篇
  2000年   6篇
  1999年   7篇
  1998年   4篇
  1997年   4篇
  1996年   7篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   7篇
  1991年   5篇
  1990年   6篇
  1988年   4篇
  1987年   8篇
  1984年   6篇
  1983年   5篇
  1979年   8篇
  1978年   3篇
  1977年   7篇
  1976年   5篇
  1974年   11篇
  1973年   7篇
  1972年   7篇
  1971年   5篇
  1969年   4篇
  1967年   3篇
  1965年   3篇
  1958年   3篇
  1944年   3篇
排序方式: 共有713条查询结果,搜索用时 15 毫秒
61.
The maltose transport complex of Escherichia coli, a member of the ATP-binding cassette superfamily, mediates the high affinity uptake of maltose at the expense of ATP. The membrane-associated transporter consists of two transmembrane subunits, MalF and MalG, and two copies of the cytoplasmic ATP-binding cassette subunit, MalK. Maltose-binding protein (MBP), a soluble periplasmic protein, delivers maltose to the MalFGK(2) transporter and stimulates hydrolysis by the transporter. Site-directed spin labeling electron paramagnetic resonance spectroscopy is used to monitor binding of MBP to MalFGK(2) and conformational changes in MBP as it interacts with MalFGK(2). Cysteine residues and spin labels have been introduced into the two lobes of MBP so that spin-spin interaction will report on ligand-induced closure of the protein (Hall, J. A., Thorgeirsson, T. E., Liu, J., Shin, Y. K., and Nikaido, H. (1997) J. Biol. Chem. 272, 17610-17614). At least two different modes of interaction between MBP and MalFGK(2) were detected. Binding of MBP to MalFGK(2) in the absence of ATP resulted in a decrease in motion of spin label at position 41 in the C-terminal domain of MBP. In a vanadate-trapped transition state intermediate, all free MBP became tightly bound to MalFGK(2), spin label in both lobes became completely immobilized, and spin-spin interactions were lost, suggesting that MBP was in an open conformation. Binding of non-hydrolyzable MgATP analogs or ATP in the absence of Mg is sufficient to stabilize a complex of open MBP and MalFGK(2). Taken together, these data suggest that closure of the MalK dimer interface coincides with opening of MBP and maltose release to the transporter.  相似文献   
62.
Buchaklian AH  Funk AL  Klug CS 《Biochemistry》2004,43(26):8600-8606
MsbA is the ABC transporter for lipid A and is found in the inner membranes of Gram-negative bacteria such as Escherichia coli. Without MsbA present, bacterial cells accumulate a toxic amount of lipid A within their inner membranes. A crystal structure of MsbA was recently obtained that provides an excellent starting point for functional dynamics studies in membranes [Chang, and Roth (2001) Science 293, 1793-1800]. Although a structure of MsbA is now available, many questions remain concerning its mechanism of transport. Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy is a powerful approach for characterizing local areas within a large protein structure in addition to detecting and following changes in local structure due to dynamic interactions within a protein. The quaternary structure of the resting state of the MsbA homodimer reconstituted into lipid membranes has been evaluated by SDSL EPR spectroscopy and chemical cross-linking techniques. SDSL and cross-linking results are consistent with the controversial resting state conformation of the MsbA homodimer found in the crystal structure, with the tips of the transmembrane helices forming a dimer interface. The position of MsbA in the membrane bilayer along with the relative orientation of the transmembrane helical bundles with respect to one another has been determined. Characterization of the resting state of the MsbA homodimer is essential for future studies on the functional dynamics of this membrane transporter.  相似文献   
63.
The mammalian tumor suppressor, phosphatase and tensin homologue deleted on chromosome 10 (PTEN), inhibits cell growth and survival by dephosphorylating phosphatidylinositol-(3,4,5)-trisphosphate (PI[3,4,5]P3). We have found a homologue of PTEN in the fission yeast, Schizosaccharomyces pombe (ptn1). This was an unexpected finding because yeast (S. pombe and Saccharomyces cerevisiae) lack the class I phosphoinositide 3-kinases that generate PI(3,4,5)P3 in higher eukaryotes. Indeed, PI(3,4,5)P3 has not been detected in yeast. Surprisingly, upon deletion of ptn1 in S. pombe, PI(3,4,5)P3 became detectable at levels comparable to those in mammalian cells, indicating that a pathway exists for synthesis of this lipid and that the S. pombe ptn1, like mammalian PTEN, suppresses PI(3,4,5)P3 levels. By examining various mutants, we show that synthesis of PI(3,4,5)P3 in S. pombe requires the class III phosphoinositide 3-kinase, vps34p, and the phosphatidylinositol-4-phosphate 5-kinase, its3p, but does not require the phosphatidylinositol-3-phosphate 5-kinase, fab1p. These studies suggest that a pathway for PI(3,4,5)P3 synthesis downstream of a class III phosphoinositide 3-kinase evolved before the appearance of class I phosphoinositide 3-kinases.  相似文献   
64.
Selection for escape mutant immunodeficiency viruses by cytotoxic T lymphocytes (CTL) has been well characterized and may be associated with disease progression. CTL epitopes accrue escape mutations at different rates in vivo. Interestingly, certain high-frequency CTL do not select for escape until the chronic phase of infection. Here we show that mutations conferring escape from immunodominant CTL directed against an epitope in the viral Gag protein are strongly associated with extraepitopic mutations in gag in vivo. The extraepitopic mutations partially restore in vitro replicative fitness of viruses bearing the escape mutations. Constraints on epitope sequences may therefore play a role in determining the rate of escape from CTL responses in vivo.  相似文献   
65.
Effects of ovarian hormones on sex and ingestive behavior are well studied, and yet, their role in diverting attention from food to sex has not been examined directly, possibly because these functions are masked under conditions of excessive food abundance typical of the laboratory. Female Syrian hamsters were either fed ad libitum or food-restricted to 75% of their ad libitum intake for 8 days and then tested every day of the estrous cycle for their preference for males versus food, food hoarding and food intake in an apparatus designed to mimic aspects of their natural habitat. The food-restricted, but not the fed females, varied significantly over the estrous cycle in appetitive behaviors, which included their preference for males versus food and in the amount of food hoarded, with low food hoarding and high male preference on the night of ovulation. In contrast, there were no significant differences between restricted and ad libitum-fed females in the consummatory behaviors, namely, food intake or lordosis duration. In ovariectomized females, estradiol plus progesterone treatment delayed food restriction-stimulated hoarding and hastened feeding-inhibited hoarding without affecting food intake or lordosis duration. In summary, energy restriction and the presence of males unmasked an effect that was obscured in the normal laboratory conditions characterized by isolation and an over abundance of readily available food. These results are consistent with the idea that ovarian hormones orchestrate appetites for food and sex to optimize reproductive success under fluctuating energetic conditions.  相似文献   
66.
67.
Kalk Bay, South Africa, has a typical south coast zonation pattern with a band of seaweed dominating the mid-eulittoral and between two molluscan-herbivore dominated upper and lower eulittoral zones. Encrusting coralline algae were very obvious features of these zones. The most abundant herbivores in the upper eulittoral were the limpet, Cymbula oculus (10.4 ± 1.6 individuals m−2; 201.65 ± 32.68 g.m−2) and the false limpet, Siphonaria capensis (97.07± 19.92 individuals m−2; 77.93 16.02 g.m−2). The territorial gardening limpet, Scutellastra cochlear, dominated the lower eulittoral zone, achieving very high densities (545.27 ± 84.35 m−2) and biomass (4630.17 ± 556.13 g.m−2), and excluded all other herbivores and most seaweeds, except for its garden alga and the encrusting coralline alga, Spongites yendoi (35.93 ± 2.26% cover). In the upper eulittoral zone, encrusting coralline algae were only present in the guts of the chiton Acanthochiton garnoti (30.5 ± 1.33%) and the limpet C. oculus (2.9 ± 0.34%). The lower eulittoral zone limpet, Scutellastra cochlear also had a large percentage of encrusting coralline algae in its gut with limpets lacking gardens having higher (45.1 ± 1.68%) proportions of coralline algae in their guts than those with gardens (25.6 ± 0.8%). Encrusting coralline algae had high organic contents, similar to those of other encrusting and turf-forming algae, but higher organic contents than foliose algae. Radula structure, grazing frequencies as a percentage of the area grazed (upper eulittoral 73.25 ± 3.60% d−1; lower eulittoral 46.0 ± 3.29% d−1), and algal organic content provided evidence to support the dietary habits of the above herbivores. The data show that many intertidal molluscs are actively consuming encrusting coralline algae and that these seaweeds should be seen as an important food source.  相似文献   
68.
Recent RNA polymerase (RNAP) structures led to a proposed three-step model of nucleoside triphosphate (NTP) binding, discrimination, and incorporation. NTPs are thought to enter through the secondary channel, bind to an E site, rotate into a pre-insertion (PS) site, and ultimately align in the catalytic (A) site. We characterized the kinetics of correct and incorrect incorporation for several Escherichia coli RNAPs with substitutions in the proposed NTP entry pore (secondary channel). Substitutions of the semi-conserved residue betaAsp(675), which is >10A away from these sites, significantly reduce fidelity; however, substitutions of the totally conserved residues betaArg(678) and betaAsp(814) do not significantly alter the correct or incorrect incorporation kinetics, even though the corresponding residues in RNAPII crystal structures appear to be interacting with the NTP phosphate groups and coordinating the second magnesium ion in the active site, respectively. Structural analysis suggests that the lower fidelity of the betaAsp(675) mutants most likely results from reduction of the negative potential of a small pore between the E and PS sites and elimination of several structural interactions around the pore. We suggest a mechanism of nucleotide discrimination that is governed both by rotation of the NTP through this pore and subsequent rearrangement or closure of RNAP to align the NTP in the A site.  相似文献   
69.
The influence of latent virus on CD8+ T cell memory is poorly understood. HSV type 1 specifically establishes latency in trigeminal ganglia (TG) after corneal infection of mice. In latently infected TG, IL-15 deprivation reduced the following: 1) accumulation of HSV-specific CD8+ effector T cells (HSV-CD8(eff)), 2) accumulation of CD127(+) putative HSV-CD8 memory precursors, and 3) the size and functionality of the memory (HSV-CD8(mem)) population. Although compromised in IL-15(-/-) mice, the HSV-CD8(mem) pool persisted in latently infected tissue, but not in noninfected tissue of the same mice. Anti-IL-2 treatment also dramatically reduced the size of the HSV-CD8(eff) population in the TG, but did not influence the concomitant generation of the CD127+ putative HSV-CD8(mem) precursor population or the size or functionality of the HSV-CD8(mem) pool. Thus, the size of the memory pool appears to be determined by the size of the CD127+ CD8(mem) precursor population and not by the size of the overall CD8(eff) pool. HSV-CD8(mem) showed a higher basal rate of proliferation in latently infected than noninfected tissue, which was associated with a reduced population of CD4+FoxP3+ regulatory T cells. Thus, the generation, maintenance, and function of memory CD8+ T cells is markedly influenced by latent virus.  相似文献   
70.
The eukaryotic signal recognition particle (SRP) and its receptor (SR) play a central role in co-translational targeting of secretory and membrane proteins to the endoplasmic reticulum. The SR is a heterodimeric complex assembled by the two GTPases SRalpha and SRbeta, which is membrane-anchored. Here we present the 2.45-A structure of mammalian SRbeta in its Mg2+ GTP-bound state in complex with the minimal binding domain of SRalpha termed SRX. SRbeta is a member of the Ras-GTPase superfamily closely related to Arf and Sar1, while SRX belongs to the SNARE-like superfamily with a fold also known as longin domain. SRX binds to the P loop and the switch regions of SRbeta-GTP. The binding mode and structural similarity with other GTPase-effector complexes suggests a co-GAP (GTPase-activating protein) function for SRX. Comparison with the homologous yeast structure and other longin domains reveals a conserved adjustable hydrophobic surface within SRX which is of central importance for the SRbeta-GTP:SRX interface. A helix swap in SRX results in the formation of a dimer in the crystal structure. Based on structural conservation we present the SRbeta-GTP:SRX structure as a prototype for conserved interactions in a variety of GTPase regulated targeting events occurring at endomembranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号