首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   28篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   10篇
  2020年   6篇
  2019年   14篇
  2018年   9篇
  2017年   12篇
  2016年   10篇
  2015年   24篇
  2014年   29篇
  2013年   19篇
  2012年   29篇
  2011年   23篇
  2010年   14篇
  2009年   14篇
  2008年   23篇
  2007年   20篇
  2006年   20篇
  2005年   21篇
  2004年   24篇
  2003年   8篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   4篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1987年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有364条查询结果,搜索用时 46 毫秒
91.
92.
Gene ytkD of Bacillus subtilis, a member of the Nudix hydrolase superfamily, has been cloned and expressed in Escherichia coli. The purified protein has been characterized as a nucleoside triphosphatase active on all of the canonical ribo- and deoxyribonucleoside triphosphates. Whereas all other nucleoside triphosphatase members of the superfamily release inorganic pyrophosphate and the cognate nucleoside monophosphate, YtkD hydrolyses nucleoside triphosphates in a stepwise fashion through the diphosphate to the monophosphate, releasing two molecules of inorganic orthophosphate. Contrary to a previous report, our enzymological and genetic studies indicate that ytkD is not an orthologue of E. coli mutT.  相似文献   
93.
Hippocampal neurons express subunits of the acid-sensing ion channel (ASIC1 and ASIC2) and exhibit large cation currents that are transiently activated by acidic extracellular solutions. Earlier work indicated that ASIC1 contributed to the current in these neurons and suggested its importance for normal behavior. However, the specific contribution of ASIC1 and ASIC2 subunits to acid-evoked currents in hippocampal neurons remained uncertain. To decipher the individual role of the ASIC subunits, we studied H(+)-gated currents in neurons from both ASIC1 and ASIC2 null mice. We found that much of the current was produced by ASIC1a/2a heteromultimeric channels, and individual subunits made distinct contributions. The ASIC1a subunit was key in establishing current amplitude. The ASIC2a subunit had little effect on amplitude but influenced desensitization, recovery from desensitization, pH sensitivity, and the response to modulatory agents. We also found heterogeneity in the contribution of ASIC2 throughout the neuronal population, with individual neurons expressing both ASIC1a homomultimeric and ASIC1a/2a heteromultimeric channels. Studies of neurons heterozygous for disrupted ASIC alleles indicated that the properties of H(+)-gated currents are dependent on the proportion of the individual subunits. These findings indicate that the absolute and relative amounts of ASIC subunits determine the amplitude and properties of hippocampal H(+)-gated currents and therefore may contribute to normal physiology and pathophysiology.  相似文献   
94.
95.
Pigeons accustomed to food reinforcement for responding in the presence of a 25-Hz flickering light were exposed to several sets of flicker-frequency stimuli arranged as increasing and decreasing series. In the first experiment, food was occasionally delivered for key pecks during 30-s periods of 25-Hz flicker appearing at the beginning, midway, and at the end of an ascending and descending series of nine frequencies, ranging from 13 to 37 Hz. These stimuli appeared for 15-s periods with no food available (extinction). Gradients of responding to flicker values in the ascending series differed from those in the descending series, showing displacements in peak responding toward the lower and higher frequency values, respectively. The same effects occurred when the sequence was changed so that a descending series was followed by an ascending series of frequencies. These effects are consonant with an adaptation level (AL) interpretation and were replicated in a second experiment in which durations of the extinction presentations were increased to 30s. In a final condition, only a descending series was presented and displacement of peak responding from 25 Hz to a higher frequency stimulus, 28 Hz, was observed.  相似文献   
96.
A number of chromosomal abnormalities including 19q deletions have been associated with the formation of human gliomas. In this study, we employed a proteomics-based approach to identify possible genes involved in glioma tumorigenesis which may serve as potential diagnostic molecular markers for this type of cancer. By comparing protein spots from gliomas and non-tumor tissues using two-dimensional (2D) gel electrophoresis, we identified 11 up-regulated proteins and four down-regulated proteins in gliomas. Interestingly, we also discovered that a group of cytoskeleton-related proteins are differentially regulated in gliomas, suggesting the involvement of cytoskeleton modulation in glioma pathogenesis. We then focused on the cytoskeleton-related protein, SIRT2 (sirtuin homologue 2) tubulin deacetylase, which was down-regulated in gliomas. SIRT2 is located at 19q13.2, a region known to be frequently deleted in human gliomas. Subsequent Northern blot analysis revealed that RNA expression of SIRT2 was dramatically diminished in 12 out of 17 gliomas and glioma cell lines, in agreement with proteomic data. Furthermore, ectopic expression of SIRT2 in glioma cell lines led to the perturbation of the microtubule network and caused a remarkable reduction in the number of stable clones expressing SIRT2 as compared to that of a control vector in colony formation assays. These results suggest that SIRT2 may act as a tumor suppressor gene in human gliomas possibly through the regulation of microtubule network and may serve as a novel molecular marker for gliomas. Additional proteins were also identified, whose function in gliomas was previously unsuspected.  相似文献   
97.
RASSF2 is a novel K-Ras-specific effector and potential tumor suppressor   总被引:7,自引:0,他引:7  
Ras proteins regulate a wide range of biological processes by interacting with a broad assortment of effector proteins. Although activated forms of Ras are frequently associated with oncogenesis, they may also provoke growth-antagonistic effects. These include senescence, cell cycle arrest, differentiation, and apoptosis. The mechanisms that underlie these growth-inhibitory activities are relatively poorly understood. Recently, two related novel Ras effectors, NORE1 and RASSF1, have been identified as mediators of apoptosis and cell cycle arrest. Both of these proteins exhibit many of the properties normally associated with tumor suppressors. We now identify a novel third member of this family, designated RASSF2. RASSF2 binds directly to K-Ras in a GTP-dependent manner via the Ras effector domain. However, RASSF2 only weakly interacts with H-Ras. Moreover, RASSF2 promotes apoptosis and cell cycle arrest and is frequently down-regulated in lung tumor cell lines. Thus, we identify RASSF2 as a new member of the RASSF1 family of Ras effectors/tumor suppressors that exhibits a specificity for interacting with K-Ras.  相似文献   
98.
In a screen for MADS box genes which activate and/or repress flowering in rice, we identified a gene encoding a MADS domain protein (OsSOC1) related to the Arabidopsis gene AtSOC1. AtSOC1 and OsSOC1 show a 97% amino acid similarity in their MADS domain. The rice gene contains a large first intron of 27.6 kb compared to the 1 kb intron in Arabidopsis. OsSOC1 is located on top of the short arm of chromosome 3, tightly linked to the heading date locus, Hd9. OsSOC1 is expressed in vegetative tissues, and expression is elevated at the time of floral initiation, 40-50 days after sowing, and remains uniformly high thereafter, similar to the expression pattern of AtSOC1. The constitutive expression of OsSOC1 in Arabidopsis results in early flowering, suggesting that the rice gene is a functional equivalent of AtSOC1. We were not able to identify FLC-like sequences in the rice genome; however, we show that ectopic expression of the Arabidopsis FLC delays flowering in rice, and the up-regulation of OsSOC1 at the onset of flowering initiation is delayed in the AtFLC transgenic lines. The reciprocal recognition and flowering time effects of genes introduced into either Arabidopsis or rice suggest that some components of the flowering pathways may be shared. This points to a potential application in the manipulation of flowering time in cereals using well characterized Arabidopsis genes.  相似文献   
99.
Quinolinic acid (QA) is an endogenous neurotoxin involved in various neurological diseases, whose action seems to be exerted via glutamatergic receptors. However, the exact mechanism responsible for the neurotoxicity of QA is far from being understood. We have previously reported that QA inhibits vesicular glutamate uptake. In this work, investigating the effects of QA on the glutamatergic system from rat brain, we have demonstrated that QA (from 0.1 to 10mM) had no effect on synaptosomal L-[3H]glutamate uptake. The effect of QA on glutamate release in basal (physiological K+ concentration) or depolarized (40 mM KCl) conditions was evaluated. QA did not alter K+-stimulated glutamate release, but 5 and 10mM QA significantly increased basal glutamate release. The effect of dizolcipine (MK-801), a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor on glutamate release was investigated. MK-801 (5 microM) did not alter glutamate release per se, but completely abolished the QA-induced glutamate release. NMDA (50 microM) also stimulated glutamate release, without altering QA-induced glutamate release, suggesting that QA effects were exerted via NMDA receptors. QA (5 and 10mM) decreased glutamate uptake into astrocyte cell cultures. Enhanced synaptosomal glutamate release, associated with inhibition of glutamate uptake into astrocytes induced by QA could contribute to increase extracellular glutamate concentrations which ultimately lead to overstimulation of the glutamatergic system. These data provide additional evidence that neurotoxicity of QA may be also related to disturbances on the glutamatergic transport system, which could result in the neurological manifestations observed when this organic acid accumulates in the brain.  相似文献   
100.
The effect of starvation on the synthesis of C16 juvenile hormone (JH) and the growth of terminal oöcytes was assessed in Schistocerca americana gregaria at two times during adult life: before activation of the corpora allata and during the first gonotrophic cycle. In both groups, starvation resulted in a decline in JH synthesis within 2–3 days and rates of synthesis remained low throughout the experimental period. The growth rate of oöcytes which were not vitellogenic at the time of starvation was depressed whereas the percentage of resorption of vitellogenic oöcytes increased dramatically with starvation. Although the percentage of resorption increased in animals with vitellogenic oöcytes, some mature oöcytes were produced, particularly in animals in which the oöcytes were greater than 5 mm in length at the time of starvation. This suggests that oöcyte maturation can be divided into two distinct phases—an early phase of vitellogenesis associated with high rates of JH synthesis and a late phase, in oöcytes greater than 5 mm, associated with much lower rates of JH synthesis.Stimulation of JH synthesis by farnesenic acid in 5-day starved animals resulted in high rates of JH synthesis, indicating that starvation did not appreciably alter the enzymic activities of the final two stages in JH synthesis. Thus rate limitation did not occur at these stages.Feeding of 5-day starved animals resulted in a transient increase in the rate of JH synthesis. However, rates of JH synthesis and oöcyte growth remained subnormal throughout the observation period, suggesting that the effects of starvation cannot be entirely reversed by feeding. Thus starvation may decrease the reproductive potential of the females.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号