全文获取类型
收费全文 | 336篇 |
免费 | 28篇 |
专业分类
364篇 |
出版年
2024年 | 1篇 |
2023年 | 3篇 |
2022年 | 4篇 |
2021年 | 10篇 |
2020年 | 6篇 |
2019年 | 14篇 |
2018年 | 9篇 |
2017年 | 12篇 |
2016年 | 10篇 |
2015年 | 24篇 |
2014年 | 29篇 |
2013年 | 19篇 |
2012年 | 29篇 |
2011年 | 23篇 |
2010年 | 14篇 |
2009年 | 14篇 |
2008年 | 23篇 |
2007年 | 20篇 |
2006年 | 20篇 |
2005年 | 21篇 |
2004年 | 24篇 |
2003年 | 8篇 |
2002年 | 10篇 |
2001年 | 2篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1996年 | 4篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1987年 | 2篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有364条查询结果,搜索用时 17 毫秒
81.
ABSTRACT: Malaria affects large parts of the developing world and is responsible for almost 800,000 deaths annually. As climates change, concerns have arisen as to how this vector-borne disease will be impacted by changing rainfall patterns and warming temperatures. Despite the importance and controversy surrounding the impact of climate change on the potential spread of this disease, little information exists on the tolerances of several of the vector species themselves. METHODS: Using a ramping protocol (to assess critical thermal limits - CT) and plunge protocol (to assess lethal temperature limits - LT) information on the thermal tolerance of two of Africa's important malaria vectors, Anopheles arabiensis and Anopheles funestus was collected. The effects of age, thermal acclimation treatment, sex and strain (laboratory versus wild adults) were investigated for CT determinations for each species. The effects of age and sex for adults and life stage (larvae, pupae, adults) were investigated for LT determinations. RESULTS: In both species, females are more tolerant to low and high temperatures than males; larvae and pupae have higher upper lethal limits than do adults. Thermal acclimation of adults has large effects in some instances but small effects in others. Younger adults tend to be more tolerant of temperature changes than older age groups. Long-standing laboratory colonies are sufficiently similar in thermal tolerance to field-collected animals to provide reasonable surrogates when making inferences about wild population responses. Differences between these two vectors in their thermal tolerances, especially in larvae and pupae, are plausibly a consequence of different habitat utilization. CONCLUSIONS: Limited plasticity is characteristic of the adults of these vector species relative to others examined to date, suggesting limited scope for within-generation change in thermal tolerance. These findings and the greater tolerance of females to thermal extremes may have significant implications for future malaria transmission, especially in areas of current seasonal transmission and in areas on the boundaries of current vector distribution. 相似文献
82.
Franziska A. Graef Larissa S. Celiberto Joannie M. Allaire Mimi T. Y. Kuan Else S. Bosman Shauna M. Crowley Hyungjun Yang Justin H. Chan Martin Stahl Hongbing Yu Candice Quin Deanna L. Gibson Elena F. Verdu Kevan Jacobson Bruce A. Vallance 《PLoS pathogens》2021,17(8)
Reducing food intake is a common host response to infection, yet it remains unclear whether fasting is detrimental or beneficial to an infected host. Despite the gastrointestinal tract being the primary site of nutrient uptake and a common route for infection, studies have yet to examine how fasting alters the host’s response to an enteric infection. To test this, mice were fasted before and during oral infection with the invasive bacterium Salmonella enterica serovar Typhimurium. Fasting dramatically interrupted infection and subsequent gastroenteritis by suppressing Salmonella’s SPI-1 virulence program, preventing invasion of the gut epithelium. Virulence suppression depended on the gut microbiota, as Salmonella’s invasion of the epithelium proceeded in fasting gnotobiotic mice. Despite Salmonella’s restored virulence within the intestines of gnotobiotic mice, fasting downregulated pro-inflammatory signaling, greatly reducing intestinal pathology. Our study highlights how food intake controls the complex relationship between host, pathogen and gut microbiota during an enteric infection. 相似文献
83.
84.
Yulan Xiong Candice E. Coombes Austin Kilaru Xiaojie Li Aaron D. Gitler William J. Bowers Valina L. Dawson Ted M. Dawson Darren J. Moore 《PLoS genetics》2010,6(4)
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with late-onset, autosomal-dominant, familial Parkinson''s disease (PD) and also contribute to sporadic disease. The LRRK2 gene encodes a large protein with multiple domains, including functional Roc GTPase and protein kinase domains. Mutations in LRRK2 most likely cause disease through a toxic gain-of-function mechanism. The expression of human LRRK2 variants in cultured primary neurons induces toxicity that is dependent on intact GTP binding or kinase activities. However, the mechanism(s) underlying LRRK2-induced neuronal toxicity is poorly understood, and the contribution of GTPase and/or kinase activity to LRRK2 pathobiology is not well defined. To explore the pathobiology of LRRK2, we have developed a model of LRRK2 cytotoxicity in the baker''s yeast Saccharomyces cerevisiae. Protein domain analysis in this model reveals that expression of GTPase domain-containing fragments of human LRRK2 are toxic. LRRK2 toxicity in yeast can be modulated by altering GTPase activity and is closely associated with defects in endocytic vesicular trafficking and autophagy. These truncated LRRK2 variants induce similar toxicity in both yeast and primary neuronal models and cause similar vesicular defects in yeast as full-length LRRK2 causes in primary neurons. The toxicity induced by truncated LRRK2 variants in yeast acts through a mechanism distinct from toxicity induced by human α-synuclein. A genome-wide genetic screen identified modifiers of LRRK2-induced toxicity in yeast including components of vesicular trafficking pathways, which can also modulate the trafficking defects caused by expression of truncated LRRK2 variants. Our results provide insight into the basic pathobiology of LRRK2 and suggest that the GTPase domain may contribute to the toxicity of LRRK2. These findings may guide future therapeutic strategies aimed at attenuating LRRK2-mediated neurodegeneration. 相似文献
85.
86.
Hongjie Yuan Katie M. Vance Candice E. Junge Matthew T. Geballe James P. Snyder John R. Hepler Manuel Yepes Chian-Ming Low Stephen F. Traynelis 《The Journal of biological chemistry》2009,284(19):12862-12873
Zinc is hypothesized to be co-released with glutamate at synapses of the
central nervous system. Zinc binds to NR1/NR2A
N-methyl-d-aspartate (NMDA) receptors with high affinity
and inhibits NMDAR function in a voltage-independent manner. The serine
protease plasmin can cleave a number of substrates, including
protease-activated receptors, and may play an important role in several
disorders of the central nervous system, including ischemia and spinal cord
injury. Here, we demonstrate that plasmin can cleave the native NR2A
amino-terminal domain (NR2AATD), removing the functional high
affinity Zn2+ binding site. Plasmin also cleaves recombinant
NR2AATD at lysine 317 (Lys317), thereby producing a
∼40-kDa fragment, consistent with plasmin-induced NR2A cleavage fragments
observed in rat brain membrane preparations. A homology model of the
NR2AATD predicts that Lys317 is near the surface of the
protein and is accessible to plasmin. Recombinant expression of NR2A with an
amino-terminal deletion at Lys317 is functional and Zn2+
insensitive. Whole cell voltage-clamp recordings show that Zn2+
inhibition of agonist-evoked NMDA receptor currents of NR1/NR2A-transfected
HEK 293 cells and cultured cortical neurons is significantly reduced by
plasmin treatment. Mutating the plasmin cleavage site Lys317 on
NR2A to alanine blocks the effect of plasmin on Zn2+ inhibition.
The relief of Zn2+ inhibition by plasmin occurs in
PAR1-/- cortical neurons and thus is independent of interaction
with protease-activated receptors. These results suggest that plasmin can
directly interact with NMDA receptors, and plasmin may increase NMDA receptor
responses through disruption or removal of the amino-terminal domain and
relief of Zn2+ inhibition.N-Methyl-d-aspartate
(NMDA)2 receptors are
one of three types of ionotropic glutamate receptors that play critical roles
in excitatory neurotransmission, synaptic plasticity, and neuronal death
(1–3).
NMDA receptors are comprised of glycine-binding NR1 subunits in combination
with at least one type of glutamate-binding NR2 subunit
(1,
4). Each subunit contains three
transmembrane domains, one cytoplasmic re-entrant membrane loop, one bi-lobed
domain that forms the ligand binding site, and one bi-lobed amino-terminal
domain (ATD), thought to share structural homology to periplasmic amino
acid-binding proteins
(4–6).
Activation of NMDA receptors requires combined stimulation by glutamate and
the co-agonist glycine in addition to membrane depolarization to overcome
voltage-dependent Mg2+ block of the ion channel
(7). The activity of NMDA
receptors is negatively modulated by a variety of extracellular ions,
including Mg2+, polyamines, protons, and Zn2+ ions,
which can exert tonic inhibition under physiological conditions
(1,
4). Several extracellular
modulators such as Zn2+ and ifenprodil are thought to act at the
ATD of the NMDA receptor
(8–14).Zinc is a transition metal that plays key roles in both catalytic and
structural capacities in all mammalian cells
(15). Zinc is required for
normal growth and survival of cells. In addition, neuronal death in
hypoxia-ischemia and epilepsy has been associated with Zn2+
(16–18).
Abnormal metabolism of zinc may contribute to induction of cytotoxicity in
neurodegenerative diseases, such as Alzheimer''s disease, Parkinson''s disease,
and amyotrophic lateral sclerosis
(19). Zinc is co-released with
glutamate at excitatory presynaptic terminals and inhibits native NMDA
receptor activation (20,
21). Zn2+ inhibits
NMDA receptor function through a dual mechanism, which includes
voltage-dependent block and voltage-independent inhibition
(22–24).
Voltage-independent Zn2+ inhibition at low nanomolar concentrations
(IC50, 20 nm) is observed for NR2A-containing NMDA
receptors
(25–28).
Evidence has accumulated that the amino-terminal domain of the NR2A subunit
controls high-affinity Zn2+ inhibition of NMDA receptors, and
several histidine residues in this region may constitute part of an
NR2A-specific Zn2+ binding site
(8,
9,
11,
12). For the NR2A subunit,
several lines of evidence suggest that Zn2+ acts by enhancing
proton inhibition (8,
11,
29,
30).Serine proteases present in the circulation, mast cells, and elsewhere
signal directly to cells by cleaving protease-activated receptors (PARs),
members of a subfamily of G-protein-coupled receptors. Cleavage exposes a
tethered ligand domain that binds to and activates the cleaved receptors
(31,
32). Protease receptor
activation has been studied extensively in relation to coagulation and
thrombolysis (33). In addition
to their circulation in the bloodstream, some serine proteases and PARs are
expressed in the central nervous system, and have been suggested to play roles
in physiological conditions (e.g. long-term potentiation or memory)
and pathophysiological states such as glial scarring, edema, seizure, and
neuronal death (31,
34–36).Functional interactions between proteases and NMDA receptors have
previously been suggested. Earlier studies reported that the blood-derived
serine protease thrombin potentiates NMDA receptor response more than 2-fold
through activation of PAR1
(37). Plasmin, another serine
protease, similarly potentiates NMDA receptor response
(38). Tissue-plasminogen
activator (tPA), which catalyzes the conversion of the zymogen precursor
plasminogen to plasmin and results in PAR1 activation, also interacts with and
cleaves the ATD of the NR1 subunit of the NMDA receptor
(39,
40). This raises the
possibility that plasmin may also interact directly with the NMDA receptor
subunits to modulate receptor response. We therefore investigated the ability
of plasmin to cleave the NR2A NMDA receptor subunit. We found that nanomolar
concentrations of plasmin can cleave within the ATD, a region that mediates
tonic voltage-independent Zn2+ inhibition of NR2A-containing NMDA
receptors. We hypothesized that plasmin cleavage reduces the
Zn2+-mediated inhibition of NMDA receptors by removing the
Zn2+ binding domain. In the present study, we have demonstrated
that Zn2+ inhibition of agonist-evoked NMDA currents is decreased
significantly by plasmin treatment in recombinant NR1/NR2A-transfected HEK 293
cells and cultured cortical neurons. These concentrations of plasmin may be
pathophysiologically relevant in situations in which the blood-brain barrier
is compromised, which could allow blood-derived plasmin to enter brain
parenchyma at concentrations in excess of these that can cleave NR2A. Thus,
ability of plasmin to potentiate NMDA function through the relief of the
Zn2+ inhibition could exacerbate the harmful actions of NMDA
receptor overactivation in pathological situations. In addition, if newly
cleaved NR2AATD enters the bloodstream during ischemic injury, it
could serve as a biomarker of central nervous system injury. 相似文献
87.
Transducin is a heterotrimeric GTP-binding protein found in the outer segment of vertebrate retinas that links the photoactivation of rhodopsin (R*) with activation of a robust type VI cGMP phosphodiesterase (PDE6). Association of the alpha subunit of Transducin (G(alphat)) with the beta-gamma complex (G(betagamma)) is necessary for interaction of the holoprotein with R* and exchange of a GTP for a previously bound GDP. We have investigated the abundances of the three Transducin subunits by eluting them from bovine rod outer segment membranes by centrifugation under various conditions in vitro. We find that a substantial amount of G(betagamma) is eluted from ROS under conditions that do not elute G(alphat) and that there is an overall three to fourfold molar excess of G(betagamma) to G(alphat) in rod outer segments. These results suggest that the production and/or turnover of G(alphat), G(beta), and G(gamma) in the rod outer segment are controlled independently. 相似文献
88.
Biotechnology Letters - For clinical cell-based therapies (e.g. CAR-T cells), the genomic integration of therapeutic genes into cells are selected using inefficient resistance genes of host origin... 相似文献
89.
Candice Kutchukian Oscar Vivas Maria Casas Julia G Jones Scott A Tiscione Sergi Sim Daniel S Ory Rose E Dixon Eamonn J Dickson 《The EMBO journal》2021,40(13)
Cholesterol and phosphoinositides (PI) are two critically important lipids that are found in cellular membranes and dysregulated in many disorders. Therefore, uncovering molecular pathways connecting these essential lipids may offer new therapeutic insights. We report that loss of function of lysosomal Niemann‐Pick Type C1 (NPC1) cholesterol transporter, which leads to neurodegenerative NPC disease, initiates a signaling cascade that alters the cholesterol/phosphatidylinositol 4‐phosphate (PtdIns4P) countertransport cycle between Golgi‐endoplasmic reticulum (ER), as well as lysosome‐ER membrane contact sites (MCS). Central to these disruptions is increased recruitment of phosphatidylinositol 4‐kinases—PI4KIIα and PI4KIIIβ—which boosts PtdIns4P metabolism at Golgi and lysosomal membranes. Aberrantly increased PtdIns4P levels elevate constitutive anterograde secretion from the Golgi complex, and mTORC1 recruitment to lysosomes. NPC1 disease mutations phenocopy the transporter loss of function and can be rescued by inhibition or knockdown of either key phosphoinositide enzymes or their recruiting partners. In summary, we show that the lysosomal NPC1 cholesterol transporter tunes the molecular content of Golgi and lysosome MCS to regulate intracellular trafficking and growth signaling in health and disease. 相似文献
90.
Aschner JL Foster SL Kaplowitz M Zhang Y Zeng H Fike CD 《American journal of physiology. Lung cellular and molecular physiology》2007,292(6):L1515-L1525
Heat shock protein 90 (Hsp90) binding to endothelial nitric oxide synthase (eNOS) is an important step in eNOS activation. The conformational state of bound Hsp90 determines whether eNOS produces nitric oxide (NO) or superoxide (O(2)(*-)). We determined the effects of the Hsp90 antagonists geldanamycin (GA) and radicicol (RA) on basal and ACh-stimulated changes in vessel diameter, cGMP production, and Hsp90:eNOS coimmunoprecipitation in piglet resistance level pulmonary arteries (PRA). In perfused piglet lungs, we evaluated the effects of GA and RA on ACh-stimulated changes in pulmonary arterial pressure (Ppa) and perfusate accumulation of stable NO metabolites (NOx(-)). The effects of GA and RA on ACh-stimulated O(2)(*-) generation was investigated in cultured pulmonary microvascular endothelial cells (PMVEC) by dihydroethidine (DHE) oxidation and confocal microscopy. Hsp90 inhibition with GA or RA reduced ACh-mediated dilation, abolished the ACh-stimulated increase in cGMP, and reduced eNOS:Hsp90 coprecipitation. GA and RA also inhibited the ACh-mediated changes in Ppa and NOx(-) accumulation rates in perfused lungs. ACh increased the rate of DHE oxidation in PMVEC pretreated with GA and RA but not in untreated cells. The cell-permeable superoxide dismutase mimetic M40401 reversed GA-mediated inhibition of ACh-induced dilation in PRA. We conclude that Hsp90 is a modulator of eNOS activity and vascular reactivity in the newborn piglet pulmonary circulation. Uncoupling of eNOS with GA or RA inhibits ACh-mediated dilation by a mechanism that involves O(2)(*-) generation. 相似文献