首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   28篇
  364篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   10篇
  2020年   6篇
  2019年   14篇
  2018年   9篇
  2017年   12篇
  2016年   10篇
  2015年   24篇
  2014年   29篇
  2013年   19篇
  2012年   29篇
  2011年   23篇
  2010年   14篇
  2009年   14篇
  2008年   23篇
  2007年   20篇
  2006年   20篇
  2005年   21篇
  2004年   24篇
  2003年   8篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   4篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1987年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有364条查询结果,搜索用时 17 毫秒
81.
ABSTRACT: Malaria affects large parts of the developing world and is responsible for almost 800,000 deaths annually. As climates change, concerns have arisen as to how this vector-borne disease will be impacted by changing rainfall patterns and warming temperatures. Despite the importance and controversy surrounding the impact of climate change on the potential spread of this disease, little information exists on the tolerances of several of the vector species themselves. METHODS: Using a ramping protocol (to assess critical thermal limits - CT) and plunge protocol (to assess lethal temperature limits - LT) information on the thermal tolerance of two of Africa's important malaria vectors, Anopheles arabiensis and Anopheles funestus was collected. The effects of age, thermal acclimation treatment, sex and strain (laboratory versus wild adults) were investigated for CT determinations for each species. The effects of age and sex for adults and life stage (larvae, pupae, adults) were investigated for LT determinations. RESULTS: In both species, females are more tolerant to low and high temperatures than males; larvae and pupae have higher upper lethal limits than do adults. Thermal acclimation of adults has large effects in some instances but small effects in others. Younger adults tend to be more tolerant of temperature changes than older age groups. Long-standing laboratory colonies are sufficiently similar in thermal tolerance to field-collected animals to provide reasonable surrogates when making inferences about wild population responses. Differences between these two vectors in their thermal tolerances, especially in larvae and pupae, are plausibly a consequence of different habitat utilization. CONCLUSIONS: Limited plasticity is characteristic of the adults of these vector species relative to others examined to date, suggesting limited scope for within-generation change in thermal tolerance. These findings and the greater tolerance of females to thermal extremes may have significant implications for future malaria transmission, especially in areas of current seasonal transmission and in areas on the boundaries of current vector distribution.  相似文献   
82.
Reducing food intake is a common host response to infection, yet it remains unclear whether fasting is detrimental or beneficial to an infected host. Despite the gastrointestinal tract being the primary site of nutrient uptake and a common route for infection, studies have yet to examine how fasting alters the host’s response to an enteric infection. To test this, mice were fasted before and during oral infection with the invasive bacterium Salmonella enterica serovar Typhimurium. Fasting dramatically interrupted infection and subsequent gastroenteritis by suppressing Salmonella’s SPI-1 virulence program, preventing invasion of the gut epithelium. Virulence suppression depended on the gut microbiota, as Salmonella’s invasion of the epithelium proceeded in fasting gnotobiotic mice. Despite Salmonella’s restored virulence within the intestines of gnotobiotic mice, fasting downregulated pro-inflammatory signaling, greatly reducing intestinal pathology. Our study highlights how food intake controls the complex relationship between host, pathogen and gut microbiota during an enteric infection.  相似文献   
83.
84.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with late-onset, autosomal-dominant, familial Parkinson''s disease (PD) and also contribute to sporadic disease. The LRRK2 gene encodes a large protein with multiple domains, including functional Roc GTPase and protein kinase domains. Mutations in LRRK2 most likely cause disease through a toxic gain-of-function mechanism. The expression of human LRRK2 variants in cultured primary neurons induces toxicity that is dependent on intact GTP binding or kinase activities. However, the mechanism(s) underlying LRRK2-induced neuronal toxicity is poorly understood, and the contribution of GTPase and/or kinase activity to LRRK2 pathobiology is not well defined. To explore the pathobiology of LRRK2, we have developed a model of LRRK2 cytotoxicity in the baker''s yeast Saccharomyces cerevisiae. Protein domain analysis in this model reveals that expression of GTPase domain-containing fragments of human LRRK2 are toxic. LRRK2 toxicity in yeast can be modulated by altering GTPase activity and is closely associated with defects in endocytic vesicular trafficking and autophagy. These truncated LRRK2 variants induce similar toxicity in both yeast and primary neuronal models and cause similar vesicular defects in yeast as full-length LRRK2 causes in primary neurons. The toxicity induced by truncated LRRK2 variants in yeast acts through a mechanism distinct from toxicity induced by human α-synuclein. A genome-wide genetic screen identified modifiers of LRRK2-induced toxicity in yeast including components of vesicular trafficking pathways, which can also modulate the trafficking defects caused by expression of truncated LRRK2 variants. Our results provide insight into the basic pathobiology of LRRK2 and suggest that the GTPase domain may contribute to the toxicity of LRRK2. These findings may guide future therapeutic strategies aimed at attenuating LRRK2-mediated neurodegeneration.  相似文献   
85.
86.
Zinc is hypothesized to be co-released with glutamate at synapses of the central nervous system. Zinc binds to NR1/NR2A N-methyl-d-aspartate (NMDA) receptors with high affinity and inhibits NMDAR function in a voltage-independent manner. The serine protease plasmin can cleave a number of substrates, including protease-activated receptors, and may play an important role in several disorders of the central nervous system, including ischemia and spinal cord injury. Here, we demonstrate that plasmin can cleave the native NR2A amino-terminal domain (NR2AATD), removing the functional high affinity Zn2+ binding site. Plasmin also cleaves recombinant NR2AATD at lysine 317 (Lys317), thereby producing a ∼40-kDa fragment, consistent with plasmin-induced NR2A cleavage fragments observed in rat brain membrane preparations. A homology model of the NR2AATD predicts that Lys317 is near the surface of the protein and is accessible to plasmin. Recombinant expression of NR2A with an amino-terminal deletion at Lys317 is functional and Zn2+ insensitive. Whole cell voltage-clamp recordings show that Zn2+ inhibition of agonist-evoked NMDA receptor currents of NR1/NR2A-transfected HEK 293 cells and cultured cortical neurons is significantly reduced by plasmin treatment. Mutating the plasmin cleavage site Lys317 on NR2A to alanine blocks the effect of plasmin on Zn2+ inhibition. The relief of Zn2+ inhibition by plasmin occurs in PAR1-/- cortical neurons and thus is independent of interaction with protease-activated receptors. These results suggest that plasmin can directly interact with NMDA receptors, and plasmin may increase NMDA receptor responses through disruption or removal of the amino-terminal domain and relief of Zn2+ inhibition.N-Methyl-d-aspartate (NMDA)2 receptors are one of three types of ionotropic glutamate receptors that play critical roles in excitatory neurotransmission, synaptic plasticity, and neuronal death (13). NMDA receptors are comprised of glycine-binding NR1 subunits in combination with at least one type of glutamate-binding NR2 subunit (1, 4). Each subunit contains three transmembrane domains, one cytoplasmic re-entrant membrane loop, one bi-lobed domain that forms the ligand binding site, and one bi-lobed amino-terminal domain (ATD), thought to share structural homology to periplasmic amino acid-binding proteins (46). Activation of NMDA receptors requires combined stimulation by glutamate and the co-agonist glycine in addition to membrane depolarization to overcome voltage-dependent Mg2+ block of the ion channel (7). The activity of NMDA receptors is negatively modulated by a variety of extracellular ions, including Mg2+, polyamines, protons, and Zn2+ ions, which can exert tonic inhibition under physiological conditions (1, 4). Several extracellular modulators such as Zn2+ and ifenprodil are thought to act at the ATD of the NMDA receptor (814).Zinc is a transition metal that plays key roles in both catalytic and structural capacities in all mammalian cells (15). Zinc is required for normal growth and survival of cells. In addition, neuronal death in hypoxia-ischemia and epilepsy has been associated with Zn2+ (1618). Abnormal metabolism of zinc may contribute to induction of cytotoxicity in neurodegenerative diseases, such as Alzheimer''s disease, Parkinson''s disease, and amyotrophic lateral sclerosis (19). Zinc is co-released with glutamate at excitatory presynaptic terminals and inhibits native NMDA receptor activation (20, 21). Zn2+ inhibits NMDA receptor function through a dual mechanism, which includes voltage-dependent block and voltage-independent inhibition (2224). Voltage-independent Zn2+ inhibition at low nanomolar concentrations (IC50, 20 nm) is observed for NR2A-containing NMDA receptors (2528). Evidence has accumulated that the amino-terminal domain of the NR2A subunit controls high-affinity Zn2+ inhibition of NMDA receptors, and several histidine residues in this region may constitute part of an NR2A-specific Zn2+ binding site (8, 9, 11, 12). For the NR2A subunit, several lines of evidence suggest that Zn2+ acts by enhancing proton inhibition (8, 11, 29, 30).Serine proteases present in the circulation, mast cells, and elsewhere signal directly to cells by cleaving protease-activated receptors (PARs), members of a subfamily of G-protein-coupled receptors. Cleavage exposes a tethered ligand domain that binds to and activates the cleaved receptors (31, 32). Protease receptor activation has been studied extensively in relation to coagulation and thrombolysis (33). In addition to their circulation in the bloodstream, some serine proteases and PARs are expressed in the central nervous system, and have been suggested to play roles in physiological conditions (e.g. long-term potentiation or memory) and pathophysiological states such as glial scarring, edema, seizure, and neuronal death (31, 3436).Functional interactions between proteases and NMDA receptors have previously been suggested. Earlier studies reported that the blood-derived serine protease thrombin potentiates NMDA receptor response more than 2-fold through activation of PAR1 (37). Plasmin, another serine protease, similarly potentiates NMDA receptor response (38). Tissue-plasminogen activator (tPA), which catalyzes the conversion of the zymogen precursor plasminogen to plasmin and results in PAR1 activation, also interacts with and cleaves the ATD of the NR1 subunit of the NMDA receptor (39, 40). This raises the possibility that plasmin may also interact directly with the NMDA receptor subunits to modulate receptor response. We therefore investigated the ability of plasmin to cleave the NR2A NMDA receptor subunit. We found that nanomolar concentrations of plasmin can cleave within the ATD, a region that mediates tonic voltage-independent Zn2+ inhibition of NR2A-containing NMDA receptors. We hypothesized that plasmin cleavage reduces the Zn2+-mediated inhibition of NMDA receptors by removing the Zn2+ binding domain. In the present study, we have demonstrated that Zn2+ inhibition of agonist-evoked NMDA currents is decreased significantly by plasmin treatment in recombinant NR1/NR2A-transfected HEK 293 cells and cultured cortical neurons. These concentrations of plasmin may be pathophysiologically relevant in situations in which the blood-brain barrier is compromised, which could allow blood-derived plasmin to enter brain parenchyma at concentrations in excess of these that can cleave NR2A. Thus, ability of plasmin to potentiate NMDA function through the relief of the Zn2+ inhibition could exacerbate the harmful actions of NMDA receptor overactivation in pathological situations. In addition, if newly cleaved NR2AATD enters the bloodstream during ischemic injury, it could serve as a biomarker of central nervous system injury.  相似文献   
87.
Transducin is a heterotrimeric GTP-binding protein found in the outer segment of vertebrate retinas that links the photoactivation of rhodopsin (R*) with activation of a robust type VI cGMP phosphodiesterase (PDE6). Association of the alpha subunit of Transducin (G(alphat)) with the beta-gamma complex (G(betagamma)) is necessary for interaction of the holoprotein with R* and exchange of a GTP for a previously bound GDP. We have investigated the abundances of the three Transducin subunits by eluting them from bovine rod outer segment membranes by centrifugation under various conditions in vitro. We find that a substantial amount of G(betagamma) is eluted from ROS under conditions that do not elute G(alphat) and that there is an overall three to fourfold molar excess of G(betagamma) to G(alphat) in rod outer segments. These results suggest that the production and/or turnover of G(alphat), G(beta), and G(gamma) in the rod outer segment are controlled independently.  相似文献   
88.
Biotechnology Letters - For clinical cell-based therapies (e.g. CAR-T cells), the genomic integration of therapeutic genes into cells are selected using inefficient resistance genes of host origin...  相似文献   
89.
Cholesterol and phosphoinositides (PI) are two critically important lipids that are found in cellular membranes and dysregulated in many disorders. Therefore, uncovering molecular pathways connecting these essential lipids may offer new therapeutic insights. We report that loss of function of lysosomal Niemann‐Pick Type C1 (NPC1) cholesterol transporter, which leads to neurodegenerative NPC disease, initiates a signaling cascade that alters the cholesterol/phosphatidylinositol 4‐phosphate (PtdIns4P) countertransport cycle between Golgi‐endoplasmic reticulum (ER), as well as lysosome‐ER membrane contact sites (MCS). Central to these disruptions is increased recruitment of phosphatidylinositol 4‐kinases—PI4KIIα and PI4KIIIβ—which boosts PtdIns4P metabolism at Golgi and lysosomal membranes. Aberrantly increased PtdIns4P levels elevate constitutive anterograde secretion from the Golgi complex, and mTORC1 recruitment to lysosomes. NPC1 disease mutations phenocopy the transporter loss of function and can be rescued by inhibition or knockdown of either key phosphoinositide enzymes or their recruiting partners. In summary, we show that the lysosomal NPC1 cholesterol transporter tunes the molecular content of Golgi and lysosome MCS to regulate intracellular trafficking and growth signaling in health and disease.  相似文献   
90.
Heat shock protein 90 (Hsp90) binding to endothelial nitric oxide synthase (eNOS) is an important step in eNOS activation. The conformational state of bound Hsp90 determines whether eNOS produces nitric oxide (NO) or superoxide (O(2)(*-)). We determined the effects of the Hsp90 antagonists geldanamycin (GA) and radicicol (RA) on basal and ACh-stimulated changes in vessel diameter, cGMP production, and Hsp90:eNOS coimmunoprecipitation in piglet resistance level pulmonary arteries (PRA). In perfused piglet lungs, we evaluated the effects of GA and RA on ACh-stimulated changes in pulmonary arterial pressure (Ppa) and perfusate accumulation of stable NO metabolites (NOx(-)). The effects of GA and RA on ACh-stimulated O(2)(*-) generation was investigated in cultured pulmonary microvascular endothelial cells (PMVEC) by dihydroethidine (DHE) oxidation and confocal microscopy. Hsp90 inhibition with GA or RA reduced ACh-mediated dilation, abolished the ACh-stimulated increase in cGMP, and reduced eNOS:Hsp90 coprecipitation. GA and RA also inhibited the ACh-mediated changes in Ppa and NOx(-) accumulation rates in perfused lungs. ACh increased the rate of DHE oxidation in PMVEC pretreated with GA and RA but not in untreated cells. The cell-permeable superoxide dismutase mimetic M40401 reversed GA-mediated inhibition of ACh-induced dilation in PRA. We conclude that Hsp90 is a modulator of eNOS activity and vascular reactivity in the newborn piglet pulmonary circulation. Uncoupling of eNOS with GA or RA inhibits ACh-mediated dilation by a mechanism that involves O(2)(*-) generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号