首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   13篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   8篇
  2014年   19篇
  2013年   15篇
  2012年   12篇
  2011年   11篇
  2010年   14篇
  2009年   18篇
  2008年   8篇
  2007年   11篇
  2006年   9篇
  2005年   8篇
  2004年   10篇
  2003年   6篇
  2002年   7篇
  2001年   6篇
  2000年   9篇
  1999年   5篇
  1998年   1篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1953年   1篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
11.
Intracranial injection of neuropeptide Y (NPY) increases the sensitivity to sodium pentobarbital and ketamin sedation and has similar properties as GABA agonists on sleep. Mice sensitive to sedation have increased levels of NPY in many brain regions and Y1(-/-) mice show a marked resistance to barbiturates. Here we characterized the role of the NPY Y receptors in anesthetic-induced sedation. We show that Y1 and Y2, but not Y5, receptors participate in the modulation of sedation. Administration of a Y1 agonist increased the sodium pentobarbital-induced sedation and Y1(-/-) mice were less sensitive to this anesthetic. However, Y2(-/-) mice display increased sensitivity, showing that Y2 modulates GABAergic induced sedation both pharmacologically and physiologically and has a functionally opposing role to the Y1 receptor. Analysis of Y1(-/-)/Y2(-/-) double mutant mice show that increased sensitivity by Y1 occurs independent of the Y2 receptor, while the decreased sensitivity mediated by Y2 depend on an intact Y1 receptor. In contrast to sodium pentobarbital, both Y1 and Y2 receptors increase the sensitivity in a collaborative fashion to NMDA antagonist-induced sedation. These data demonstrate the physiological and pharmacological impact of the Y1 and Y2 receptors on sedation.  相似文献   
12.
G-protein-coupled receptors form homomers and heteromers; agonist-induced conformational changes within interacting receptors of the oligomer modify their pharmacology, signalling and/or trafficking. When these receptors are activated, the oligomers rearrange and cluster and a novel mechanism of receptor-operation regulation by oligomer intercommunication is possible. This intercommunication would be assisted by components of the plasma membrane and by scaffolding proteins. Receptor cross-sensitization, cross-desensitization and novel, integrated receptor responses can then develop between oligomeric receptor complexes of the cluster without direct contact between them. This concept gives a new perspective to the understanding of neurotransmission and neuronal plasticity.  相似文献   
13.
Glutathione (GSH) depletion is the earliest biochemical alteration shown to date in brains of Parkinson's disease patients. However, data from animal models show that GSH depletion by itself is not sufficient to induce nigral degeneration. We have previously shown that non-toxic inhibition of GSH synthesis with l-buthionine-(S,R)-sulfoximine in primary midbrain cultures transforms a nitric oxide (NO) neurotrophic effect, selective for dopamine neurons, into a toxic effect with participation of guanylate cyclase (GC) and cGMP-dependent protein kinase (PKG) (Canals, S., Casarejos, M. J., de Bernardo, S., Rodríguez-Martín, E., and Mena, M. A. (2001) J. Neurochem. 79, 1183-1195). Here we demonstrate that arachidonic acid (AA) metabolism through the 12-lipoxygenase (12-LOX) pathway is also central for this GSH-NO interaction. LOX inhibitors (nordihydroguaiaretic acid and baicalein), but not cyclooxygenase (indomethacin) or epoxygenase (clotrimazole) ones, prevent cell death in the culture, even when added 10 h after NO treatment. Furthermore, the addition of AA to GSH-depleted cultures precipitates a cell death process that is indistinguishable from that initiated by NO in its morphology, time course, and 12-LOX, GC, and PKG dependence. The first AA metabolite through the 12-LOX enzyme, 12-hydroperoxyeicosatetraenoic acid, induces cell death in the culture, and its toxicity is greatly enhanced by GSH depletion. In addition we show that if GSH synthesis inhibition persists for up to 4 days without any additional treatment, it will induce a cell death process that also depends on 12-LOX, GC, and PKG activation. In this study, therefore, we show that the signaling pathway AA/12-LOX/12-HPETE/GC/PKG may be important in several pathologies in which GSH decrease has been documented, such as Parkinson's disease. The potentiating effect of NO over such a signaling pathway may be of relevance as part of the cascade of events leading to and sustaining nerve cell death.  相似文献   
14.
The role of astroglia on the survival of dopamine neurons   总被引:5,自引:0,他引:5  
Glial cells play a key role in the function of dopamine (DA) neurons and regulate their differentiation, morphology, physiological and pharmacological properties, survival, and resistance to different models of DA lesion. Several studies suggest that glial cells may be important in the pathogenesis of Parkinson’s disease (PD), a common neurodegenerative disorder characterized by degeneration of the nigrostriatal DA system. In this disease the role of glia could be due to the excessive production of toxic products such as nitric oxide (NO) or cytokines characteristic of inflammatory process, or related to a defective release of neuroprotective agents, such as small antioxidants with free radical scavenging properties or peptidic neurotrophic factors.  相似文献   
15.
The unfolding and denaturation curves of potato carboxypeptidase inhibitor (PCI) were investigated using the technique of disulfide scrambling. In the presence of denaturant and thiol initiator, the native PCI denatures by shuffling its native disulfide bonds and converts to form a mixture of scrambled PCI that consists of 9 out of a possible 14 isomers. The denaturation curve is determined by the fraction of native PCI converted to scrambled isomers under increasing concentrations of denaturant. The concentration of guanidine thiocyanate, guanidine hydrochloride, and urea required to denature 50% of the native PCI was found to be 0.7, 1.45, and 8 m, respectively. The PCI unfolding curve was constructed through the analysis of structures of scrambled isomers that were denatured under increasing concentrations of denaturant. These results reveal the existence of structurally defined unfolding intermediates and a progressive expansion of the polypeptide chain. The yield of the beads-form isomer (Cys(8)-Cys(12), Cys(18)-Cys(24), and Cys(27)-Cys(34)) as a fraction of total denatured PCI was shown to be directly proportional to the strength of the denaturing condition. Furthermore, the PCI sequence was unable to fold quantitatively into a single native structure. Under physiological conditions, the scrambled isomers of PCI that constitute about 4% of the protein were in equilibrium with native PCI.  相似文献   
16.
Life cycle assessment (LCA) was used to compare the current water supply planning in Mediterranean Spain, the so‐called AGUA Programme, with its predecessor, the Ebro river water transfer (ERWT). Whereas the ERWT was based on a single interbasin transfer, the AGUA Programme excludes new transfers and focuses instead on different types of resources, including seawater and brackish water desalination and wastewater reuse, among others. The study includes not only water supply but the whole anthropic cycle of water, from water abstraction to wastewater treatment. In addition to standard LCA impact categories, a specific impact category focusing on freshwater resources is included, which takes into account freshwater scarcity in the affected water catchments. In most impact categories the AGUA Programme obtains similar or even lower impact scores than ERWT. Concerning impacts on freshwater resources, the AGUA Programme obtains an impact score 49% lower than the ERWT. Although the current water planning appears to perform better in many impact categories than its predecessor, this study shows that water supply in Spanish Mediterranean regions is substantially increasing its energy intensity and that Mediterranean basins suffer a very high level of water stress due to increasing demand and limited resources.  相似文献   
17.
Mouse liver glutathione transferase P1-1 has three cysteine residues at positions 14, 47 and 169. We have constructed the single, double and triple cysteine to alanine mutants to define the behaviour of all three thiols. We confirm that C47 is the 'fast' thiol (pK 7.4), and define C169 as the alkaline reactive residue with a pK(a) of 8.6. Only a small proportion of C14 is reactive with 5,5'-dithiobis-(2-nitrobenoic acid) (DTNB) at pH 9 in the C47A/C169A double mutant. The native enzyme and the C169A mutant exhibited Michaelis-Menten kinetics, but all other thiol to alanine mutants exhibited sigmoidal kinetics to varying degrees. The C169A mutant exhibited 'ping pong' kinetics, consistent with a mechanism whereby liberation of a proton from a reduced enzyme-glutathione (GSH) complex to form an enzyme-GS(-) (unprotonated) complex is essentially irreversible. Intriguingly, similar behaviour has recently been reported for a mutant of the yeast prion Ure2p. This cooperative behaviour is 'mirrored' in the crystal structure of the C47A mutant, which binds the p-nitrobenzyl moiety of p-nitrobenzyglutathione in distinct orientations in the two crystallographic subunits. The asymmetry seen in this structure for product binding is associated with absence of a water molecule W0 in the standard wild-type conformation of product binding that is clearly identifiable in the new structure, which may represent a structural model for binding of incoming GSH prior to displacement of W0. Elimination of W0 as a hydroxonium ion may be the mechanism for the initial proton extrusion from the active site.  相似文献   
18.
Adenosine A1 receptors (A1Rs) and adenosine A(2A) receptors (A(2A)Rs) are the major mediators of the neuromodulatory actions of adenosine in the brain. In the striatum A1Rs and A(2A)Rs are mainly co-localized in the GABAergic striatopallidal neurons. In this paper we show that agonist-induced stimulation of A1Rs and A(2A)Rs induces neurite outgrowth processes in the human neuroblastoma cell line SH-SY5Y and also in primary cultures of striatal neuronal precursor cells. The kinetics of adenosine-mediated neuritogenesis was faster than that triggered by retinoic acid. The triggering of the expression of TrkB neurotrophin receptor and the increase of cell number in the G1 phase by the activation of adenosine receptors suggest that adenosine may participate in early steps of neuronal differentiation. Furthermore, protein kinase C (PKC) and extracellular regulated kinase-1/2 (ERK-1/2) are involved in the A1R- and A(2A)R-mediated effects. Inhibition of protein kinase A (PKA) activity results in a total inhibition of neurite outgrowth induced by A(2A)R agonists but not by A1R agonists. PKA activation is therefore necessary for A(2A)R-mediated neuritogenesis. Co-stimulation does not lead to synergistic effects thus indicating that the neuritogenic effects of adenosine are mediated by either A1 or A(2A) receptors depending upon the concentration of the nucleoside. These results are relevant to understand the mechanisms by which adenosine receptors modulate neuronal differentiation and open new perspectives for considering the use of adenosine agonists as therapeutic agents in diseases requiring neuronal repair.  相似文献   
19.
The design of the bronchial tree has largely been proposed as a model of optimal design from a physical-functional perspective. However, the distributive function of the airway may be more related to a geometrical than a physical problem. The bronchial tree must distribute a three dimensional volume of inspired air on a two dimensional alveolar surface, included in a limited volume. It is thus valid to ask whether an optimal bronchial tree from a physical perspective is also optimum from a geometrical point of view. In this paper we generate a simple geometric model for the branching pattern of the bronchial tree, deducing relationships that permit estimation of the departures from the geometrical optimum of each bifurcation. We also, for comparative purposes, estimate the departures from the physical optimum. From the geometrical assumptions: i) a symmetrical dichotomic fractal design, ii) with minimum volume and iii) maximum dispersion of the terminal points; and several simulations we suggest that the optimality is characterized by a bifurcation angle theta approximately 60 degrees and a length reduction scale gamma = (1/2)(1/3) = 0.7937. We propose distances from the physical and geometrical optimality defined as Euclidean distances from the expected optima. We show how the advanced relationships and the distances can be used to estimate departures from the optimality in bronchographs of four species. We found lower physical and geometrical departures in the distal zone than those of the proximal zones, as well as lower physical than geometrical departures from optimality.  相似文献   
20.

Table of Contents

Table of Contents of Volume 52 - 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号