首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1791篇
  免费   148篇
  1939篇
  2023年   6篇
  2022年   24篇
  2021年   27篇
  2020年   20篇
  2019年   26篇
  2018年   43篇
  2017年   28篇
  2016年   48篇
  2015年   77篇
  2014年   77篇
  2013年   129篇
  2012年   138篇
  2011年   136篇
  2010年   100篇
  2009年   90篇
  2008年   138篇
  2007年   121篇
  2006年   110篇
  2005年   110篇
  2004年   102篇
  2003年   89篇
  2002年   80篇
  2001年   9篇
  2000年   14篇
  1999年   19篇
  1998年   23篇
  1997年   16篇
  1996年   12篇
  1995年   10篇
  1994年   15篇
  1993年   13篇
  1992年   10篇
  1991年   10篇
  1990年   9篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   8篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有1939条查询结果,搜索用时 15 毫秒
81.
82.
The blood–brain barrier (BBB) is confined to the endothelium of brain capillaries and is indispensable for fluid homeostasis and neuronal function. In this study, we show that endothelial Wnt/β-catenin (β-cat) signaling regulates induction and maintenance of BBB characteristics during embryonic and postnatal development. Endothelial specific stabilization of β-cat in vivo enhances barrier maturation, whereas inactivation of β-cat causes significant down-regulation of claudin3 (Cldn3), up-regulation of plamalemma vesicle-associated protein, and BBB breakdown. Stabilization of β-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature. Loss of β-cat or inhibition of its signaling abrogates this effect. Furthermore, stabilization of β-cat also increased Cldn3 and barrier properties in nonbrain-derived ECs. These findings may open new therapeutic avenues to modulate endothelial barrier function and to limit the devastating effects of BBB breakdown.  相似文献   
83.
The self-assembly of soluble proteins and peptides into β-sheet-rich oligomeric structures and insoluble fibrils is a hallmark of a large number of human diseases known as amyloid diseases. Drugs that are able to interfere with these processes may be able to prevent and/or cure these diseases. Experimental difficulties in the characterization of the intermediates involved in the amyloid formation process have seriously hampered the application of rational drug design approaches to the inhibition of amyloid formation and growth. Recently, short model peptide systems have proved useful in understanding the relationship between amino acid sequence and amyloid formation using both experimental and theoretical approaches. Moreover, short d-peptide sequences have been shown to specifically interfere with those short amyloid stretches in proteins, blocking oligomer formation or disassembling mature fibrils. With the aim of rationalizing which interactions drive the binding of inhibitors to nascent β-sheet oligomers, in this study, we have carried out extensive molecular dynamics simulations of the interaction of selected d-peptide sequences with oligomers of the target model sequence STVIIE. Structural analysis of the simulations helped to identify the molecular determinants of an inhibitory core whose conformational and physicochemical properties are actually shared by nonpeptidic small-molecule inhibitors of amyloidogenesis. Selection of one of these small molecules and experimental validation against our model system proved that it was indeed an effective inhibitor of fibril formation by the STVIIE sequence, supporting theoretical predictions. We propose that the inhibitory determinants derived from this work be used as structural templates in the development of pharmacophore models for the identification of novel nonpeptidic inhibitors of aggregation.  相似文献   
84.
The present study was undertaken to investigate the existence of intraocular pressure (IOP) rhythms in athletic thoroughbred horses maintained under a 24 h cycle of light and darkness (LD) or under constant light (LL) or constant dark (DD) conditions. We identified an IOP circadian rhythm that is entrained to the 24 h LD cycle. IOP was low during the dark phase and high during the light phase, with a peak at the end of the light phase (ZT10). The circadian rhythm of IOP persisted in DD (with a peak at CT9.5), demonstrating an endogenous component in IOP rhythm. As previously shown in other mammalian species, horse IOP circadian rhythmicity was abolished in LL. Because tonometry is performed in horses for the diagnosis of ophthalmologic diseases, such as glaucoma or anterior uveitis, the daily variation in IOP must be taken into account in clinical practice to properly time tests and to interpret clinical findings.  相似文献   
85.
Eukaryotic cells plasma membranes are organized into microdomains of specialized function such as lipid rafts and caveolae, with a specific lipid composition highly enriched in cholesterol and glycosphingolipids. In addition to their role in regulating signal transduction, multiple functions have been proposed, such as anchorage of receptors, trafficking of cholesterol, and regulation of permeability. However, an extensive understanding of their protein composition in human heart, both in failing and non-failing conditions, is not yet available. Membrane microdomains were isolated from left ventricular tissue of both failing (n = 15) and non-failing (n = 15) human hearts. Protein composition and differential protein expression was explored by comparing series of 2-D maps and subsequent identification by LC-MS/MS analysis. Data indicated that heart membrane microdomains are enriched in chaperones, cytoskeletal-associated proteins, enzymes and protein involved in signal transduction pathway. In addition, differential protein expression profile revealed that 30 proteins were specifically up- or down-regulated in human heart failure membrane microdomains. This study resulted in the identification of human heart membrane microdomain protein composition, which was not previously available. Moreover, it allowed the identification of multiple proteins whose expression is altered in heart failure, thus opening new perspectives to determine which role they may play in this disease.  相似文献   
86.
CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression.The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections.The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19.  相似文献   
87.
Topoisomerase (topo) IV and gyrase are bacterial type IIA DNA topoisomerases essential for DNA replication and chromosome segregation that act via a transient double-stranded DNA break involving a covalent enzyme-DNA "cleavage complex." Despite their mechanistic importance, the DNA breakage determinants are not understood for any bacterial type II enzyme. We investigated DNA cleavage by Streptococcus pneumoniae topo IV and gyrase stabilized by gemifloxacin and other antipneumococcal fluoroquinolones. Topo IV and gyrase induce distinct but overlapping repertoires of double-strand DNA breakage sites that were essentially identical for seven different quinolones and were augmented (in intensity) by positive or negative supercoiling. Sequence analysis of 180 topo IV and 126 gyrase sites promoted by gemifloxacin on pneumococcal DNA revealed the respective consensus sequences: G(G/c)(A/t)A*GNNCt(T/a)N(C/a) and GN4G(G/c)(A/c)G*GNNCtTN(C/a) (preferred bases are underlined; disfavored bases are in small capitals; N indicates no preference; and asterisk indicates DNA scission between -1 and +1 positions). Both enzymes show strong preferences for bases clustered symmetrically around the DNA scission site, i.e. +1G/+4C, -4G/+8C, and particularly the novel -2A/+6T, but with no preference at +2/+3 within the staggered 4-bp overhang. Asymmetric elements include -3G and several unfavored bases. These cleavage preferences, the first for Gram-positive type IIA topoisomerases, differ markedly from those reported for Escherichia coli topo IV (consensus (A/G)*T/A) and gyrase, which are based on fewer sites. However, both pneumococcal enzymes cleaved an E. coli gyrase site suggesting overlap in gyrase determinants. We propose a model for the cleavage complex of topo IV/gyrase that accommodates the unique -2A/+6T and other preferences.  相似文献   
88.
Tyrosinase is a key enzyme in the synthesis of melanin in skin and hair and has also been proposed to contribute to the formation of neuromelanin (NM). The presence of NM, which is biochemically similar to melanin in peripheral tissues, identifies groups of neurons susceptible in Parkinson's disease (PD). Whether tyrosinase is beneficial or detrimental to neurons is unclear; whilst the enzyme activity of tyrosinase generates dopamine-quinones and other oxidizing compounds, NM may form a sink for such radical species. In the present study, we demonstrated that tyrosinase is expressed at low levels in the human brain. We found that mRNA, protein and enzyme activity are all present but at barely detectable levels. In cell culture systems, expression of tyrosinase increases neuronal susceptibility to oxidizing conditions, including dopamine itself. We related these in vitro observations to the human disease by assessing whether there was any genetic association between the gene encoding tyrosinase and idiopathic PD. We found neither genotypic or haplotypic association with three polymorphic markers of the gene. This argues against a strong genetic association between tyrosinase and PD, although the observed contribution to cellular toxicity suggests that a biochemical association is likely.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号