首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   36篇
  2024年   1篇
  2023年   7篇
  2022年   7篇
  2021年   17篇
  2020年   15篇
  2019年   16篇
  2018年   14篇
  2017年   16篇
  2016年   17篇
  2015年   39篇
  2014年   32篇
  2013年   38篇
  2012年   37篇
  2011年   43篇
  2010年   21篇
  2009年   22篇
  2008年   15篇
  2007年   21篇
  2006年   12篇
  2005年   14篇
  2004年   14篇
  2003年   15篇
  2002年   6篇
  2001年   8篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有469条查询结果,搜索用时 15 毫秒
51.
52.
Nuclear envelope-peripheral heterochromatin fractions contain multiple histone kinase activities. In vitro assays and amino-terminal sequencing show that one of these activities co-isolates with heterochromatin protein 1 (HP1) and phosphorylates histone H3 at threonine 3. Antibodies recognizing this post-translational modification reveal that in vivo phosphorylation at threonine 3 commences at early prophase in the vicinity of the nuclear envelope, spreads to pericentromeric chromatin during prometaphase and is fully reversed by late anaphase. This spatio-temporal pattern is distinct from H3 phosphorylation at serine 10, which also occurs during cell division, suggesting segregation of differentially phosphorylated chromatin to different regions of mitotic chromosomes.  相似文献   
53.
Glutamate carboxypeptidase II (GCP II) inhibition has previously been shown to be protective against long-term neuropathy in diabetic animals. In the current study, we have determined that the GCP II inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA) is protective against glucose-induced programmed cell death (PCD) and neurite degeneration in dorsal root ganglion (DRG) neurons in a cell culture model of diabetic neuropathy. In this model, inhibition of caspase activation is mediated through the group II metabotropic glutamate receptor, mGluR3. 2-PMPA neuroprotection is completely reversed by the mGluR3 antagonist (S)-alpha-ethylglutamic acid (EGLU). In contrast, group I and III mGluR inhibitors have no effect on 2-PMPA neuroprotection. Furthermore, we show that two mGluR3 agonists, the direct agonist (2R,4R)-4-aminopyrrolidine-2, 4-dicarboxylate (APDC) and N-acetyl-aspartyl-glutamate (NAAG) provide protection to neurons exposed to high glucose conditions, consistent with the concept that 2-PMPA neuroprotection is mediated by increased NAAG activity. Inhibition of GCP II or mGluR3 may represent a novel mechanism to treat neuronal degeneration under high-glucose conditions.  相似文献   
54.
Ammonium and manganese are neurotoxic agents related to brain metabolic disturbances observed after prolonged liver damage. The aim of this study was to assess the production of nitric oxide (NO) in the brain of cirrhotic rats exposed to manganese. We induced cirrhosis by bile duct ligation for 4 weeks in rats. From brain, striatum and globus pallidus were dissected out, and NO synthase activity and the content of nitrites plus nitrates (NOx) were determined. In pallidum we found a diminished constitutive NO synthase activity from cirrhotic rats, independently of manganese exposure. This result was confirmed by low levels of NOx in the same brain area (P<0.05, two-way ANOVA). This finding was not related to protein expression of NO synthase since no differences were observed in immunoblot signals between cirrhotic and sham-operated animals. Results from present study suggest that the production of NO is reduced in basal ganglia during cirrhosis.  相似文献   
55.
56.
Mammalian cell-derived West Nile virus preferentially infects cells expressing the C-type lectin CD209L (dendritic cellspecific ICAM-3 grabbing nonintegrin-related protein; liver- and lymph node-specific ICAM-3 grabbing nonintegrin) but not cells expressing CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). In contrast, Dengue virus infection is enhanced in cells expressing either attachment factor. The West Nile virus envelope (E) protein contains a single N-linked glycosylation site at residue 154, whereas Dengue virus E contains sites at residues 153 and 67. We introduced a glycosylation site at position 67 into West Nile virus E. Reporter virus particles pseudotyped with this E protein infected cells using either CD209 or CD209L. We also introduced glycosylation sites at several novel positions. All sites allowed CD209L-mediated infection, but only a subset promoted CD209 use. As seen for other viruses, mannose-rich glycans on West Nile virus were required for its interactions with CD209. Surprisingly, however, mannose-rich glycans were not required for CD209L-mediated infection. Complex glycans, particularly N-acetylglucosamine-terminated structures, were able to mediate reporter virus particle interactions with CD209L. We propose that CD209L recognizes glycosylated flaviviruses with broad specificity, whereas CD209 is selective for flaviviruses bearing mannose-rich glycans. The location of the N-linked glycosylation sites on a virion determines the types of glycans incorporated, thus controlling viral tropism for CD209-expressing cells.  相似文献   
57.
Several genomes of different Mycobacterium tuberculosis isolates have been completely sequenced around the world. The genomic information obtained have shown higher diversity than originally thought and specific adaptations to different human populations. Within this work, we sequenced the genome of one Colombian M.?tuberculosis virulent isolate. Genomic comparison against the reference genome of H37Rv and other strains showed multiple deletion and insertions that ranged between a few bases to thousands. Excluding PPE and PG-PGRS genes, 430 proteins present changes in at least 1 amino acid. Also, novel positions of the IS6110 mobile element were identified. This isolate is also characterized by a large genomic deletion of 3.6?kb, leading to the loss and modification of the dosR regulon genes, Rv1996 and Rv1997. To our knowledge, this is the first report of the genome sequence of a Latin American M.?tuberculosis clinical isolate.  相似文献   
58.
Voltage-gated K(+) channels composed of Kv7.2 and Kv7.3 are the predominant contributors to the M-current, which plays a key role in controlling neuronal activity. Various lines of evidence have indicated that Kv7.2 and Kv7.3 form a heteromeric channel. However, the subunit stoichiometry and arrangement within this putative heteromer are so far unknown. Here, we have addressed this question using atomic force microscopy imaging of complexes between isolated Kv7.2/Kv7.3 channels and antibodies to epitope tags on the two subunits, Myc on Kv7.2 and HA on Kv7.3. Initially, tsA 201 cells were transiently transfected with equal amounts of cDNA for the two subunits. The heteromer was isolated through binding of either tag to immunoaffinity beads and then decorated with antibodies to the other tag. In both cases, the distribution of angles between pairs of bound antibodies had two peaks, at around 90° and around 180°, and in both cases the 90° peak was about double the size of the 180° peak. These results indicate that the Kv7.2/Kv7.3 heteromer generated by cells expressing approximately equal amounts of the two subunits assembles as a tetramer with a predominantly 2:2 subunit stoichiometry and with a random subunit arrangement. When the DNA ratio for the two subunits was varied, copurification experiments indicated that the subunit stoichiometry was variable and not fixed at 2:2. Hence, there are no constraints on either the subunit stoichiometry or the subunit arrangement.  相似文献   
59.
Mitochondrial dysfunction plays a major role in the development of oxidative stress and cytotoxicity induced by non-steroidal anti-inflammatory drugs (NSAIDs). A major objective of the present study was to investigate whether in vitro the NSAIDs, aspirin, indomethacin, diclofenac, piroxicam and ibuprofen, which feature different chemical structures, are able to inhibit mitochondrial complex I. All NSAIDs were effective inhibitors when added both, directly to mitochondria isolated from rat duodenum epithelium (50 μM) or to Caco-2 cells (250 μM). In the former system, complex I inhibition was concentration-dependent and susceptible to competition and reversion by the addition of coenzyme Q (32.5-520 μM). Based on reports suggesting a potential gastro-protective activity of quercetin, the ability of this flavonoid to protect isolated mitochondria against NSAIDs-induced complex I inhibition was evaluated. Low micromolar concentrations of quercetin (1-20 μM) protected against such inhibition, in a concentration dependent manner. In the case of aspirin, quercetin (5 μM) increased the IC50 by 10-fold. In addition, the present study shows that quercetin (5-10 μM) can behave as a "coenzyme Q-mimetic" molecule, allowing a normal electron flow along the whole electron transporting chain (complexes I, II, III and IV). The exposed findings reveal that complex I inhibition is a common deleterious effect of NSAIDs at the mitochondrial level, and that such effect is, for all tested agents, susceptible to be prevented by quercetin. Data provided here supports the contention that the protective action of quercetin resides on its, here for first time-shown, ability to behave as a coenzyme Q-like molecule.  相似文献   
60.
Protective immunity to rotavirus (RV) is primarily mediated by antibodies produced by RV-specific memory B cells (RV-mBc). Of note, most of these cells express IgM, but the function of this subset is poorly understood. Here, using limiting dilution assays of highly sort-purified human IgM(+) mBc, we found that 62% and 21% of total (non-antigen-specific) IgM(+) and RV-IgM(+) mBc, respectively, switched in vitro to IgG production after polyclonal stimulation. Moreover, in these assays, the median cloning efficiencies of total IgM(+) (17%) and RV-IgM(+) (7%) mBc were lower than those of the corresponding switched (IgG(+) IgA(+)) total (34%) and RV-mBc (17%), leading to an underestimate of their actual frequency. In order to evaluate the in vivo role of IgM(+) RV-mBc in antiviral immunity, NOD/Shi-scid interleukin-2 receptor-deficient (IL-2Rγ(null)) immunodeficient mice were adoptively transferred highly purified human IgM(+) mBc and infected with virulent murine rotavirus. These mice developed high titers of serum human RV-IgM and IgG and had significantly lower levels than control mice of both antigenemia and viremia. Finally, we determined that human RV-IgM(+) mBc are phenotypically diverse and significantly enriched in the IgM(hi) IgD(low) subset. Thus, RV-IgM(+) mBc are heterogeneous, occur more frequently than estimated by traditional limiting dilution analysis, have the capacity to switch Ig class in vitro as well as in vivo, and can mediate systemic antiviral immunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号