首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   36篇
  2024年   1篇
  2023年   7篇
  2022年   7篇
  2021年   17篇
  2020年   15篇
  2019年   16篇
  2018年   14篇
  2017年   16篇
  2016年   17篇
  2015年   39篇
  2014年   32篇
  2013年   38篇
  2012年   37篇
  2011年   43篇
  2010年   21篇
  2009年   22篇
  2008年   15篇
  2007年   21篇
  2006年   12篇
  2005年   14篇
  2004年   14篇
  2003年   15篇
  2002年   6篇
  2001年   8篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有469条查询结果,搜索用时 31 毫秒
111.
Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under “business as usual” (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world’s terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world’s population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.  相似文献   
112.

Background

Viruses can evade immune surveillance, but the underlying mechanisms are insufficiently understood. Here, we sought to understand the mechanisms by which natural killer (NK) cells recognize HIV-1-infected cells and how this virus can evade NK-cell-mediated immune pressure.

Methods and Findings

Two sequence mutations in p24 Gag associated with the presence of specific KIR/HLA combined genotypes were identified in HIV-1 clade C viruses from a large cohort of infected, untreated individuals in South Africa (n = 392), suggesting viral escape from KIR+ NK cells through sequence variations within HLA class I—presented epitopes. One sequence polymorphism at position 303 of p24 Gag (TGag303V), selected for in infected individuals with both KIR2DL3 and HLA-C*03:04, enabled significantly better binding of the inhibitory KIR2DL3 receptor to HLA-C*03:04-expressing cells presenting this variant epitope compared to the wild-type epitope (wild-type mean 18.01 ± 10.45 standard deviation [SD] and variant mean 44.67 ± 14.42 SD, p = 0.002). Furthermore, activation of primary KIR2DL3+ NK cells from healthy donors in response to HLA-C*03:04+ target cells presenting the variant epitope was significantly reduced in comparison to cells presenting the wild-type sequence (wild-type mean 0.78 ± 0.07 standard error of the mean [SEM] and variant mean 0.63 ± 0.07 SEM, p = 0.012). Structural modeling and surface plasmon resonance of KIR/peptide/HLA interactions in the context of the different viral sequence variants studied supported these results. Future studies will be needed to assess processing and antigen presentation of the investigated HIV-1 epitope in natural infection, and the consequences for viral control.

Conclusions

These data provide novel insights into how viruses can evade NK cell immunity through the selection of mutations in HLA-presented epitopes that enhance binding to inhibitory NK cell receptors. Better understanding of the mechanisms by which HIV-1 evades NK-cell-mediated immune pressure and the functional validation of a structural modeling approach will facilitate the development of novel targeted immune interventions to harness the antiviral activities of NK cells.  相似文献   
113.
Epidermal growth factor (EGF) binding to its receptor (EGFR) activates several signaling intermediates, including Akt, leading to control of cell survival and metabolism. Concomitantly, ligand-bound EGFR is incorporated into clathrin-coated pits—membrane structures containing clathrin and other proteins—eventually leading to receptor internalization. Whether clathrin might regulate EGFR signaling at the plasma membrane before vesicle scission is poorly understood. We compared the effect of clathrin perturbation (preventing formation of, or receptor recruitment to, clathrin structures) to that of dynamin2 (allowing formation of clathrin structures but preventing EGFR internalization) under conditions in which EGFR endocytosis is clathrin dependent. Clathrin perturbation by siRNA gene silencing, with the clathrin inhibitor pitstop2, or knocksideways silencing inhibited EGF-simulated Gab1 and Akt phosphorylation in ARPE-19 cells. In contrast, perturbation of dynamin2 with inhibitors or by siRNA gene silencing did not affect EGF-stimulated Gab1 or Akt phosphorylation. EGF stimulation enriched Gab1 and phospho-Gab1 within clathrin structures. ARPE-19 cells have low ErbB2 expression, and overexpression and knockdown experiments revealed that robust ErbB2 expression bypassed the requirement for clathrin for EGF-stimulated Akt phosphorylation. Thus clathrin scaffolds may represent unique plasma membrane signaling microdomains required for signaling by certain receptors, a function that can be separated from vesicle formation.  相似文献   
114.
Hybrid zones are powerful natural systems to study evolutionary processes to gain an understanding of adaptation and speciation. In the Cauca Valley (Colombia), two butterfly races, Heliconius cydno cydnides and Heliconius cydno weymeri, meet and hybridize. We characterized this hybrid zone using a combination of mitochondrial DNA (mtDNA) sequences, amplified fragment length polymorphisms (AFLPs), microsatellites and sequences for nuclear loci within and outside of the genomic regions that cause differences in wing colour pattern. The hybrid zone is largely composed of individuals of mixed ancestry. However, there is strong genetic discontinuity between the hybridizing races in mtDNA and, to a lesser extent, in all nuclear markers surveyed. The mtDNA clustering of H. c. cydnides with the H. cydno race from the Magdalena Valley and H. c. weymeri with the H. cydno race from the pacific coast suggests that H. c. cydnides colonized the Cauca Valley from the north, whereas H. c. weymeri did so by crossing the Andes in the southern part, implying a secondary contact origin. Colonization of the valley by H. cydno was accompanied by mimicry shift. Strong ecological isolation, driven by locally adaptive differences in mimetic wing patterns, is playing an important role in maintaining the hybrid zone. However, selection on wing pattern alone is not sufficient to explain the genetic discontinuity observed. There is evidence for differences in male mating preference, but the contribution of additional barriers needs further investigation. Overall, our results support the idea that speciation is a cumulative process, where the combination of multiple isolation barriers, combined with major phenotypic differences, facilitates population divergence in face of gene flow.  相似文献   
115.
A new PLA2 Bj-V from Bothrops jararacussu (14039.49 Da determined by MALDI-TOF mass spectrometry) was isolated in only one chromatographic step by HPLC ion-exchange and its purity was confirmed by reverse phase. Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The N-terminal sequence (DLWQFGQMIL KETGKIPFPY YGAYGCYCGW GGRGGKPKDG TDRCCYVHD...) showed a high degree of homology with basic D49 PLA2 myotoxins from other Bothrops venoms. Bj V showed discrete sigmoidal enzymatic behavior, with maximal activity at pH 8.4 and 35-40 degrees C. Full PLA2 activity required Ca2+ (10 mM) and there was little catalytic activity in the presence of 1 mM Ca2+. The addition of Mn2+ or Mg2+ (10 mM) in the presence of low (1 mM) Ca2+ slightly increased the enzyme activity, whereas Zn2+ and Cu2+ (10 mM) diminished the activity. The substitution of Ca2+ for Mg2+ or Cu2+ also reduced the enzymatic activity. Bj V had PLA2 activity and produced cytotoxicity in murine C2C12 skeletal muscle myoblasts and myotubes. The isolation of these isoforms Bj-IV [1] and Bj-V (described herein) found in a fraction previously described as homogeneous shows us the importance of optimization in purification techniques in order to better understand their biological behavior.  相似文献   
116.
Genome-wide association studies (GWAS) have successfully identified several risk loci for Alzheimer''s disease (AD). Nonetheless, these loci do not explain the entire susceptibility of the disease, suggesting that other genetic contributions remain to be identified. Here, we performed a meta-analysis combining data of 4,569 individuals (2,540 cases and 2,029 healthy controls) derived from three publicly available GWAS in AD and replicated a broad genomic region (>248,000 bp) associated with the disease near the APOE/TOMM40 locus in chromosome 19. To detect minor effect size contributions that could help to explain the remaining genetic risk, we conducted network-based pathway analyses either by extracting gene-wise p-values (GW), defined as the single strongest association signal within a gene, or calculated a more stringent gene-based association p-value using the extended Simes (GATES) procedure. Comparison of these strategies revealed that ontological sub-networks (SNs) involved in glutamate signaling were significantly overrepresented in AD (p<2.7×10−11, p<1.9×10−11; GW and GATES, respectively). Notably, glutamate signaling SNs were also found to be significantly overrepresented (p<5.1×10−8) in the Alzheimer''s disease Neuroimaging Initiative (ADNI) study, which was used as a targeted replication sample. Interestingly, components of the glutamate signaling SNs are coordinately expressed in disease-related tissues, which are tightly related to known pathological hallmarks of AD. Our findings suggest that genetic variation within glutamate signaling contributes to the remaining genetic risk of AD and support the notion that functional biological networks should be targeted in future therapies aimed to prevent or treat this devastating neurological disorder.  相似文献   
117.
Eggs of Aedes triseriatus mosquitoes are stimulated to hatch when inundated with water, but only a small fraction of eggs from the same batch will hatch for any given stimulus. Similar hatching or germination patterns are observed in desert plants, copepods, rotifers, insects, and many other species. Bet hedging theory suggests that parents stagger offspring emergence into vulnerable life history stages in order to avoid catastrophic reproductive failures. For Ae. triseriatus, a treehole breeding mosquito, immediate hatching of an entire clutch leaves all of the parent's progeny vulnerable to extinction in the event of a severe drought. Natural selection has likely favored parents that pursued a bet hedging strategy where the risk of reproductive failure is distributed over time. Considering treehole mosquitoes, bet hedging theory could be used to predict that hatch delay would be positively correlated with the likelihood of drought. To test this prediction, we collected Ae. triseriatus from habitats that varied widely in mean annual precipitation and exposed them to several hatch stimuli in the laboratory. Here we report that, as predicted, Ae. triseriatus eggs from high precipitation regions showed less hatch delay than areas of low precipitation. This strategy probably allows Ae. triseriatus to cope with the wide variety of climatic conditions that it faces in its extensive geographical range.  相似文献   
118.
A comprehensive understanding of animal growth requires adequate knowledge of protein synthesis (PS), which in fish, has traditionally been determined by the flooding dose method. However, this procedure is limited to short-term assessments and may not accurately describe fish growth over extended periods of time. Since deuterium oxide (2H2O) has been used to non-invasively quantify PS in mammals over short- and long-term periods, we aimed at determining if 2H2O could also be used to measure PS in channel catfish. Fish were stocked in a 40-L aquarium with ~ 4% 2H2O and sampled at 4, 8 and 24 h (n = 6 at each time period) to determine 2H-labeling of body water (plasma), as well as protein-free and protein-bound 2H-labeled alanine. The labeling of body water reflected that of aquarium water and the labeling of protein-free alanine remained constant over 24 h and was ~ 3.8 times greater than that of body water. By measuring 2H-labeled alanine incorporation after 24 h of 2H2O exposure we were able to calculate a rate of PS: 0.04 ± 0.01% h− 1. These results demonstrate that PS in fish can be effectively measured using 2H2O and, because this method yields integrative measures of PS, is relatively inexpensive and accounts for perturbations such as feeding, it is a novel and practical assessment option.  相似文献   
119.
The Andes are a hotspot of global avian diversity, but studies on the historical diversification of Andean birds remain relatively scarce. Evolutionary studies on avian lineages with Andean–Patagonian distributions have focused on reconstructing species-level phylogenies, whereas no detailed phylogeographic studies on widespread species have been conducted. Here, we describe phylogeographic patterns in the Bar-winged Cinclodes (Cinclodes fuscus), a widespread and common species of ovenbird (Furnariidae) that breeds from Tierra del Fuego to the northern Andes. Traditionally, C. fuscus has been considered a single species composed of nine subspecies, but its long and narrow range suggests the possibility of considerable genetic variation among populations. Sequences of two mitochondrial genes revealed three discrete and geographically coherent groups of C. fuscus, occupying the southern, central, and northern Andes. Surprisingly, phylogenetic analyses indicated that these groups were more closely related to other species of Cinclodes than to each other. Relationships of the southern and northern C. fuscus clades to other species of Cinclodes were straightforward; in combination with available information on plumage, behavioral, and vocal variation, this suggests that each should be recognized as a distinct biological species. The central Andean group was paraphyletic with respect to C. oustaleti, and relationships among these taxa and C. olrogi were poorly resolved. We suggest that the central Andean C. fuscus should also be considered a different species, pending new information to clarify species limits in this group. These new phylogenetic data, along with recently developed methods, allowed us to review the biogeography of the genus, confirming southern South America and the central Andes as important areas for the diversification of these birds.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号