首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   12篇
  2021年   6篇
  2019年   2篇
  2018年   9篇
  2017年   3篇
  2016年   6篇
  2015年   12篇
  2014年   9篇
  2013年   12篇
  2012年   29篇
  2011年   21篇
  2010年   11篇
  2009年   12篇
  2008年   14篇
  2007年   23篇
  2006年   12篇
  2005年   18篇
  2004年   10篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1991年   3篇
  1990年   6篇
  1988年   1篇
  1986年   4篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1979年   4篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1968年   1篇
  1951年   1篇
  1945年   1篇
  1918年   4篇
  1916年   5篇
  1915年   2篇
排序方式: 共有314条查询结果,搜索用时 15 毫秒
81.
82.
Intermittent hypoxia, followed by reoxygenation, determines the production of reactive oxygen species (ROS), which may lead to accelerated aging and to the appearance of age-related diseases. The rise in ROS levels might constitute a stress-stimulus activating specific redox-sensitive signalling pathways, so inducing either damaging or protective functions. Here, we report that in old rat cerebral cortex exposed to hypoxia, the accumulation in the cytoplasm of hypoxic inducible factor 1alpha (HIF-1alpha)--the master regulator of oxygen homeostasis--concomitant with p66(Shc) activation and reduced IkBalpha phosphorylation is associated with tissue apoptosis or necrosis. In young cerebral cortex, we hypothesize that the hypoxic damage may be reversible, based on our demonstration of elevated HIF-1alpha levels, combined with a low level of IkBalpha phosphorylation, a decrease in IAP-1 and a lack of major change in Bcl2 family proteins. These observations are associated with a low level of cell death induced by hypoxia, suggesting that HIF-1alpha activation in cortical neurons may produce rescue proteins in response to intermittent hypoxia.  相似文献   
83.
84.
85.
Hosts may mitigate the impact of parasites by two broad strategies: resistance, which limits parasite burden, and tolerance, which limits the fitness or health cost of increasing parasite burden. The degree and causes of variation in both resistance and tolerance are expected to influence host–parasite evolutionary and epidemiological dynamics and inform disease management, yet very little empirical work has addressed tolerance in wild vertebrates. Here, we applied random regression models to longitudinal data from an unmanaged population of Soay sheep to estimate individual tolerance, defined as the rate of decline in body weight with increasing burden of highly prevalent gastrointestinal nematode parasites. On average, individuals lost weight as parasite burden increased, but whereas some lost weight slowly as burden increased (exhibiting high tolerance), other individuals lost weight significantly more rapidly (exhibiting low tolerance). We then investigated associations between tolerance and fitness using selection gradients that accounted for selection on correlated traits, including body weight. We found evidence for positive phenotypic selection on tolerance: on average, individuals who lost weight more slowly with increasing parasite burden had higher lifetime breeding success. This variation did not have an additive genetic basis. These results reveal that selection on tolerance operates under natural conditions. They also support theoretical predictions for the erosion of additive genetic variance of traits under strong directional selection and fixation of genes conferring tolerance. Our findings provide the first evidence of selection on individual tolerance of infection in animals and suggest practical applications in animal and human disease management in the face of highly prevalent parasites.  相似文献   
86.
At present, computer assisted surgery systems help orthopaedic surgeons both plan and perform surgical procedures. To enable these systems to function, it is crucial to have at one's disposal 3D models of anatomical structures, surgical tools and prostheses (if required). This paper analyses and compares three methods for generating 3D digital models of anatomical structures starting from X-ray images: parametric solid modelling/reconfiguration, global shape modelling and free-form deformation. Seven experiences involving the generation of a femur model were conducted by software developers and different skilled users. These experiences are described in detail and compared at different stages and from different points of view.  相似文献   
87.
Receptor activator of NFκB ligand (RANKL), RANK, and osteoprotegerin (OPG) represent the key regulators of bone metabolism both in normal and pathological conditions, including bone metastases. To our knowledge, no previous studies investigated and compared RANK expression in primary tumors and in bone metastases from the same patient. We retrospectively examined RANK expression by immunohistochemistry in 74 bone metastases tissues from solid tumors, mostly breast, colorectal, renal, lung, and prostate cancer. For 40 cases, tissue from the corresponding primary tumor was also analyzed. Sixty‐six (89%) of the 74 bone metastases were RANK‐positive and, among these, 40 (59.5%) showed more than 50% of positive tumor cells. The median percentage of RANK‐positive cells was 60% in primary tumors and metastases, without any statistically significant difference between the two groups (P = 0.194). The same percentage was obtained by considering only cases with availability of samples both from primary and metastasis. Our study shows that RANK is expressed by solid tumors, with high concordance between bone metastasis and corresponding primary tumor. These data highlight the central role of RANK/RANKL/OPG pathway as potential therapeutic target not only in bone metastasis management, but also in the adjuvant setting. J. Cell. Physiol. 226: 780–784, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
88.
89.
Gap junction channels are gated by a chemical gate and two transjunctional voltage (V j)-sensitive gates: fast and slow. Slow V j gate and chemical gate are believed to be the same. The slow gate closes at the negative side of V j and is mostly inactive without uncouplers or connexin (Cx) mutations. In contrast, our present data indicate otherwise. Oocytes expressing Cx32 were subjected to series of −100 mV V j pulses (12-s duration, 30-s intervals). Both peak (PK) and steady-state (SS) junctional conductances (G j), measured at each pulse, decreased exponentially by 50−60% (tau = ∼1.2 min). G jPK dropped more dramatically, such that G jSS/G jPK increased from 0.4 to 0.6, indicating a drop in V j sensitivity. Less striking effects were obtained with –60 mV pulses. During recovery, G j, measured by applying 20 mV pulses (2-s duration, 30-s intervals), slowly returned to initial values (tau = ∼7 min). With reversal of V j polarity, G jPK briefly increased and G jSS/G jPK decreased, suggesting that V j-dependent hemichannel reopening is faster than hemichannel closing. Similar yet more dramatic results were obtained with COOH-terminus truncated Cx32 (Cx32-D225), a mutant believed to lack fast V j gating. The data indicate that the slow gate of Cx32 is active in the absence of uncouplers or mutations and displays unusual V j behavior. Based on previous evidence for direct calmodulin (CaM) involvement in chemical/slow gating, this may also be CaM-mediated.  相似文献   
90.
Interactions of connexins with other membrane channels and transporters   总被引:2,自引:0,他引:2  
Cell-to-cell communication through gap junctions exists in most animal cells and is essential for many important biological processes including rapid transmission of electric signals to coordinate contraction of cardiac and smooth muscle, the intercellular propagation of Ca(2+) waves and synchronization of physiological processes between adjacent cells within a tissue. Recent studies have shown that connexins (Cx) can have either direct or indirect interactions with other plasma membrane ion channels or membrane transport proteins with important functional consequences. For example, in tissues most severely affected by cystic fibrosis (CF), activation of the CF Transmembrane Conductance Regulator (CFTR) has been shown to influence connexin function. Moreover, a direct interaction between Cx45.6 and the Major Intrinsic Protein/AQP0 in lens appears to influence the process of cell differentiation whereas interactions between aquaporin 4 (AQP4) and Cx43 in mouse astrocytes may coordinate the intercellular movement of ions and water between astrocytes. In this review, we discuss evidence supporting interactions between Cx and membrane channels/transporters including CFTR, aquaporins, ionotropic glutamate receptors, and between pannexin1, another class of putative gap-junction-forming proteins, and Kvbeta3, a regulatory beta-subunit of voltage gated potassium channels. Although the precise molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号