首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20564篇
  免费   2097篇
  国内免费   11篇
  2023年   91篇
  2022年   113篇
  2021年   388篇
  2020年   262篇
  2019年   291篇
  2018年   346篇
  2017年   358篇
  2016年   497篇
  2015年   879篇
  2014年   955篇
  2013年   1049篇
  2012年   1469篇
  2011年   1409篇
  2010年   942篇
  2009年   846篇
  2008年   1168篇
  2007年   1255篇
  2006年   1003篇
  2005年   1039篇
  2004年   1056篇
  2003年   1002篇
  2002年   941篇
  2001年   325篇
  2000年   322篇
  1999年   290篇
  1998年   268篇
  1997年   177篇
  1996年   137篇
  1995年   130篇
  1994年   153篇
  1993年   130篇
  1992年   205篇
  1991年   203篇
  1990年   158篇
  1989年   164篇
  1988年   158篇
  1987年   160篇
  1986年   147篇
  1985年   166篇
  1984年   160篇
  1983年   120篇
  1982年   93篇
  1981年   109篇
  1980年   96篇
  1979年   97篇
  1978年   97篇
  1976年   84篇
  1974年   94篇
  1973年   72篇
  1971年   75篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
The development and maintenance of the prostate are dependent upon a complex series of interactions occurring between the epithelial and stromal tissues (Hayward and Cunha [2000]: Radiol. Clin. N. Am. 38:1-14). During the process of prostatic carcinogenesis, there are progressive changes in the interactions of the nascent tumor with its surrounding stroma and extracellular matrix. These include the development of a reactive stromal phenotype and the possible promotion, by stromal cells, of epithelial proliferation and loss of differentiated function (Hayward et al. [1996]: Ann. N. Y. Acad. Sci. 784:50-62; Grossfeld et al. [1998]: Endocr. Related Cancer 5:253-270; Rowley [1998]: Cancer Metastasis Rev. 17:411-419; Tuxhorn et al. [2002]: Clin. Cancer Res. 8:2912-2923). Many molecules play an as yet poorly defined role in establishing and maintaining a growth quiescent glandular structure in the adult. Peroxisome proliferator-activated receptor gamma (PPARgamma) is a candidate regulator of prostatic epithelial differentiation and may play a role in restricting epithelial proliferation. PPARgamma agonists are relatively non-toxic and have been used with limited success to treat some prostate cancer patients. We would propose that a more complete understanding of PPARgamma biology, particularly in the context of appropriate stromal-epithelial and host-tumor interactions would allow for the selection of patients most likely to benefit from this line of therapy. In particular, it seems reasonable to suggest that the patients most likely to benefit may be those with relatively indolent low stage disease for whom this line of therapy could be a useful additive to watchful waiting.  相似文献   
982.
Epitope tags are widely used in cell biology and biochemistry research. The S-peptide/S-protein interaction has previously been utilized to purify polypeptides expressed in bacteria. We have now re-engineered the S-peptide/S-protein system to allow isolation of S-peptide-tagged polypeptides and their binding partners from eukaryotic cells with S-protein-agarose. In addition, two anti-S-peptide monoclonal antibodies have been generated for analysis of expression and subcellular localization of S-peptide-tagged polypeptides. These reagents make the S-peptide/S-protein system an attractive alternative to currently available epitope tagging methods.  相似文献   
983.
984.
985.
986.
987.
988.
IQGAP1 is a homodimeric protein that reversibly associates with F-actin, calmodulin, activated Cdc42 and Rac1, CLIP-170, beta-catenin, and E-cadherin. Its F-actin binding site includes a calponin homology domain (CHD) located near the N-terminal of each subunit. Prior studies have implied that medium- to high-affinity F-actin binding (5-50 microM K(d)) requires multiple CHDs located either on an individual polypeptide or on distinct subunits of a multimeric protein. For IQGAP1, a series of six tandem IQGAP coiled-coil repeats (IRs) located past the C-terminal of the CHD of each subunit support protein dimerization and, by extension, the IRs or an undefined subset of them were thought to be essential for F-actin binding mediated by its CHDs. Here we describe efforts to determine the minimal region of IQGAP1 capable of binding F-actin. Several truncation mutants of IQGAP1, which contain progressive deletions of the IRs and CHD, were assayed for F-actin binding in vitro. Fragments that contain both the CHD and at least one IR could bind F-actin and, as expected, removal of all six IRs and the CHD abolished binding. Unexpectedly, a fragment called IQGAP1(2-210), which contains the CHD, but lacks IRs, could bind actin filaments. IQGAP1(2-210) was found to be monomeric, to bind F-actin with a K(d) of approximately 47 microM, to saturate F-actin at a molar ratio of one IQGAP1(2-210) per actin monomer, and to co-localize with cortical actin filaments when expressed by transfection in cultured cells. These collective results identify the first known example of high-affinity actin filament binding mediated by a single CHD.  相似文献   
989.
Exercise provides protection against ischemia-reperfusion (I-R)-induced arrhythmias, myocardial stunning, and infarction. An exercise-induced increase in myocardial manganese superoxide dismutase (MnSOD) activity has been reported to be vital for protection against infarction. However, whether MnSOD is essential for exercise-induced protection against ventricular arrhythmias is unknown. We determined the effects of preventing the exercise-induced increase in MnSOD activity on arrhythmias during I-R resulting in myocardial stunning. Male rats remained sedentary or were subjected to successive bouts of endurance exercise. During in vivo myocardial I-R, the incidence of arrhythmias was significantly lower in the exercise-trained rats than in the sedentary rats as evidenced by the arrhythmia. When exercised rats were pretreated with antisense oligonucleotides directed against MnSOD, protection from arrhythmias was attenuated. Moreover, I-R resulted in significant increases in nitro-tyrosine (NT) in the sedentary group. Exercise abolished this I-R-induced NT formation but this protection was unchanged by antisense treatment. Protein carbonyls were increased by I-R, but neither exercise nor antisense treatment impacted carbonyl formation. These data demonstrate that an exercise-induced increase in MnSOD activity is important for protection against arrhythmias. The mechanism by which MnSOD provides protection does not appear to be linked to protein nitrosylation or oxidation.  相似文献   
990.
The tripeptide glutathione (GSH) is part of an integrated antioxidant system that protects cells and tissues from oxidative damage. Oxidative stress can result from exposure to excessive amounts of endogenous and exogenous electrophiles. Until recently, animal and cell model systems used to investigate the role of GSH in disease processes had employed chemical agents that deplete cellular GSH by inhibiting GSH synthesis or by reacting chemically with GSH. Such models have proven useful, but questions concerning nonspecific effects of such chemicals remain. Recently, our laboratories and others have developed mouse models with genetic deficiencies in enzymes of the GSH biosynthetic pathway. This review focuses on the regulation of GSH homeostasis and, specifically, the new GSH-deficient mouse models that have been developed. These models will improve our understanding of the role of GSH in animal and human diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号