首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3606篇
  免费   337篇
  国内免费   2篇
  3945篇
  2023年   33篇
  2022年   47篇
  2021年   83篇
  2020年   53篇
  2019年   70篇
  2018年   74篇
  2017年   59篇
  2016年   117篇
  2015年   191篇
  2014年   172篇
  2013年   204篇
  2012年   265篇
  2011年   254篇
  2010年   169篇
  2009年   117篇
  2008年   218篇
  2007年   184篇
  2006年   154篇
  2005年   142篇
  2004年   161篇
  2003年   178篇
  2002年   153篇
  2001年   38篇
  2000年   35篇
  1999年   51篇
  1998年   56篇
  1997年   39篇
  1996年   41篇
  1995年   31篇
  1994年   36篇
  1993年   36篇
  1992年   40篇
  1991年   40篇
  1990年   23篇
  1989年   32篇
  1988年   31篇
  1987年   22篇
  1986年   32篇
  1985年   21篇
  1984年   24篇
  1983年   17篇
  1982年   13篇
  1981年   22篇
  1980年   19篇
  1979年   18篇
  1978年   13篇
  1977年   15篇
  1976年   21篇
  1975年   13篇
  1974年   20篇
排序方式: 共有3945条查询结果,搜索用时 19 毫秒
991.
992.
Five highly conserved per os infectivity factors, PIF1, PIF2, PIF3, PIF4, and P74, have been reported to be essential for oral infectivity of baculovirus occlusion-derived virus (ODV) in insect larvae. Three of these proteins, P74, PIF1, and PIF2, were thought to function in virus binding to insect midgut cells. In this paper evidence is provided that PIF1, PIF2, and PIF3 form a stable complex on the surface of ODV particles of the baculovirus Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV). The complex could withstand 2% SDS-5% β-mercaptoethanol with heating at 50°C for 5 min. The complex was not formed when any of the genes for PIF1, PIF2, or PIF3 was deleted, while reinsertion of these genes into AcMNPV restored the complex. Coimmunoprecipitation analysis independently confirmed the interactions of the three PIF proteins and revealed in addition that P74 is also associated with this complex. However, deletion of the p74 gene did not affect formation of the PIF1-PIF2-PIF3 complex. Electron microscopy analysis showed that PIF1 and PIF2 are localized on the surface of the ODV with a scattered distribution. This distribution did not change for PIF1 or PIF2 when the gene for PIF2 or PIF1 protein was deleted. We propose that PIF1, PIF2, PIF3, and P74 form an evolutionarily conserved complex on the ODV surface, which has an essential function in the initial stages of baculovirus oral infection.The entry mechanism of enveloped viruses includes two major steps: virus binding to host receptors and subsequent fusion of the viral membrane with the cell membrane. For many viruses the processes of binding and fusion are mediated by a machinery composed of several membrane proteins working in concert with sequential events triggered by conformational changes upon interaction with host (co)receptors. Examples are herpes simplex virus (HSV) (4) and vaccinia virus (23), which have an entry machinery composed of four and eight proteins, respectively. The entry of the occlusion-derived virus (ODV) form of baculoviruses into insect midgut epithelial cells upon oral infection of insect larvae may involve a similar strategy, but little is known about the role of ODV membrane proteins.Baculovirus ODVs are orally infectious, enveloped virus particles embedded in a protein crystal called an occlusion body (OB) that infect midgut epithelial cells (24). After ingestion of OBs by the host, the proteinaceous OB crystal dissolves quickly due to the alkaline conditions (pH 10 to 11) in the midgut, and the ODV particles are released (reviewed in reference 24). After passage through the peritrophic membrane, ODVs bind and fuse with the microvilli of columnar epithelial cells, resulting in the release of nucleocapsids into the cytosol and subsequent initiation of infection (10, 12, 24). A second type of virus particle, the budded virus (BV), is produced in these cells and infects other cells and tissues in the insect, causing a systemic infection (reviewed in reference 22). While the entry mechanisms of BVs have been studied at least to a certain extent (16, 31, 32), the entry mechanism of ODVs is still rather enigmatic due to its complexity and the lack of proper cell lines supporting ODV entry.ODVs contain more than 10 different envelope proteins (3). Five of these, denoted PIF1, PIF2, PIF3, PIF4, and P74, have been identified to be essential for per os infection of insect larvae (6, 7, 14, 18, 20). These PIF proteins function in the early stage of virus infection, and deletion of any of these pif genes leads to a block in infection prior to viral gene expression in midgut epithelial cells (7, 10, 18). Until now, three of these proteins, PIF1, PIF2, and P74, have been reported to function in virus binding (10, 18). Deletion of any of these three proteins leads to a loss of oral infectivity, while only a 3-fold reduction in binding is measured, and no significant reduction in fusion efficiency is observed (10, 18). This suggests that the three PIF proteins, apart from binding to midgut epithelial cells, may have other unknown functions for which they may have to work together. The functions of PIF3 and PIF4 are rather enigmatic although there has been speculation that PIF3 functions in nucleocapsid translocation along the microvilli as it seemed to be dispensable for ODV binding and fusion (18, 24).All five proteins are highly conserved in Baculoviridae and are encoded by so-called core genes (3, 6, 11, 29). Recent work further revealed that these proteins have homologues in other large invertebrate DNA viruses which replicate in the nucleus, such as salivary gland hypertrophy viruses (SGHVs) (9), nudiviruses (30) and white spot syndrome virus (WSSV) (Nimaviridae) (J. A. Jehle, personal communication). pif genes are also found in polydnaviruses of braconid wasps (2). This high conservation of pif genes in a diverse range of large, circular, double-stranded DNA viruses suggests that the PIF proteins are associated with a conserved and evolutionarily ancient entry mechanism of viruses into invertebrate hosts.The aim of the present study is to follow the ODV entry process by investigating whether the PIF proteins form a complex on the ODV membrane. Based on immunogold labeling, cross-linking, differential temperature SDS-PAGE, and coimmunoprecipitation (CoIP) analysis with a panel of recombinant viruses, we provide strong evidence that PIF1, PIF2, PIF3, and P74 form a complex on the ODV surface. This complex is likely to play an essential role in virus entry into midgut epithelial cells of susceptible insect larvae.  相似文献   
993.
The threat of a pandemic spread of highly virulent influenza A viruses currently represents a top global public health problem. Mass vaccination remains the most effective way to combat influenza virus. However, current vaccination strategies face the challenge to meet the demands in a pandemic situation. In a mouse model of severe influenza virus-induced pneumonitis, we observed that prior nasal administration of an attenuated strain of Bordetella pertussis (BPZE1) provided effective and sustained protection against lethal challenge with two different influenza A virus subtypes. In contrast to most cross-protective effects reported so far, the protective window offered upon nasal treatment with BPZE1 lasted up to at least 12 weeks, suggesting a unique mechanism(s) involved in the protection. No significant differences in viral loads were observed between BPZE1-treated and control mice, indicating that the cross-protective mechanism(s) does not directly target the viral particles and/or infected cells. This was further confirmed by the absence of cross-reactive antibodies and T cells in serum transfer and in vitro restimulation experiments, respectively. Instead, compared to infected control mice, BPZE1-treated animals displayed markedly reduced lung inflammation and tissue damage, decreased neutrophil infiltration, and strong suppression of the production of major proinflammatory mediators in their bronchoalveolar fluids (BALFs). Our findings thus indicate that protection against influenza virus-induced severe pneumonitis can be achieved through attenuation of exaggerated cytokine-mediated inflammation. Furthermore, nasal treatment with live attenuated B. pertussis offers a potential alternative to conventional approaches in the fight against one of the most frightening current global public health threats.Influenza virus pandemics are unpredictable but recurring events that can have severe consequences on societies worldwide. In the 20th century, three novel influenza virus strains emerged, causing the 1918, 1957, and 1968 pandemics, the most devastating being the 1918 Spanish flu that led to an estimated 50 million deaths (47). The recent spread of highly pathogenic avian influenza (HPAI) H5N1 virus across parts of Asia, Europe, and the Middle East, with an overall fatality rate of over 60% for humans, as well as the rapid pandemic spread of a novel influenza A virus of the H1N1 subtype, has caused worldwide concern about a potential remake of the 1918 disaster (8).Severe complications arising from pandemic influenza or HPAI H5N1 viruses are associated with rapid, massive inflammatory cell infiltration, resulting in acute respiratory distress, and reactive hemophagocytosis with multiple organ involvement. Both the 1918 Spanish influenza virus and HPAI H5N1 induce a cytokine storm characterized by an exaggerated production of inflammatory cytokines and chemokines in the serum and lungs caused by uncontrolled activation of the host''s innate immune system. This triggers massive pulmonary edema, primary and/or secondary pneumonia, and alveolar hemorrhage with acute bronchopneumonia (4, 12, 24, 27, 37, 40, 43, 44).The relationship between mortality, viral load, and immunopathology during influenza virus infection remains elusive and somewhat controversial. Some studies suggest that severe lung immunopathology is a direct consequence of a high viral load that the host is unable to resolve (12, 13), whereas others have reported that influenza virus-induced mortality is not a direct function of viral burden but a consequence of immune-mediated pathology (9, 11). Moreover, the picture is further complicated by the fact that different highly virulent influenza A viruses may induce distinct pathological signatures and lead to different courses of acute respiratory distress syndrome, refuting the hypothesis of a single, universal cytokine storm underlying all fatal influenza virus diseases (16).Currently, vaccination remains the cornerstone of influenza virus prevention. However, due to constant antigenic drift and shift of the two major viral surface proteins hemagglutinin (HA) and neuraminidase (NA) (7), influenza virus vaccines must be reformulated each year in order to match the circulating subtypes (41). The potential emergence of an influenza virus pandemic at any time, combined with limited vaccine supplies, has rendered global vaccination strategies difficult. Therefore, a universal influenza virus vaccine that can provide protection against different variants or strains and thus not require frequent updates is highly desirable.Here, we report that nasal administration of a recently developed live attenuated Bordetella pertussis vaccine strain, named BPZE1 (35), provides effective and sustained protection against lethal challenge with mouse-adapted H3N2 or H1N1 (A/PR/8/34) influenza A viruses. We demonstrate that the protective mechanism(s) does not target the viral particles or the infected host cells but controls the influenza virus-mediated inflammation by dampening the cytokine storm. As BPZE1 has recently entered phase I safety trials with humans (http://www.child-innovac.org), our observations support the potential application of this vaccine strain as a universal prophylactic treatment against highly pathogenic influenza A viruses.  相似文献   
994.
BACKGROUND:The COVID-19 pandemic has exacerbated disparities in poverty and illness for people in vulnerable circumstances in ethnocultural communities. We sought to understand the evolving impacts of COVID-19 on ethnocultural communities to inform intersectoral advocacy and community action.METHODS:The Illuminate Project used participatory action research, with cultural health brokers as peer researchers, from Sept. 21 to Dec. 31, 2020, in Edmonton, Alberta. Twenty-one peer researchers collected narratives from members of ethnocultural communities and self-interpreted them as they entered the narratives into the SenseMaker platform, a mixed-method data collection tool. The entire research team analyzed real-time, aggregate, quantitative and qualitative data to identify emerging thematic domains, then visualized these domains with social network analysis.RESULTS:Brokers serving diverse communities collected 773 narratives. Identified domains illuminate the evolving and entangled impacts of COVID-19 including the following: COVID-19 prevention and management; care of acute, chronic and serious illnesses other than COVID-19; maternal care; mental health and triggers of past trauma; financial insecurity; impact on children and youth and seniors; and legal concerns. We identified that community social capital and cultural brokering are key assets that facilitate access to formal health and social system supports.INTERPRETATION:The Illuminate Project has illustrated the entangled, systemic issues that result in poor health among vulnerable members of ethnocultural communities, and the exacerbating effects of COVID-19, which also increased barriers to mitigation. Cultural brokering and community social capital are key supports for people during the COVID-19 pandemic. These findings can inform policy to reduce harm and support community resiliency.

Mahatma Gandhi observed that “the true measure of any society can be found in how it treats its most vulnerable members.” Ethnocultural communities, defined by their unique shared characteristics (e.g., cultural traditions, language, country of origin),1 face greater challenges and have higher rates of poverty and illness than the general Canadian population. Migration results in conditions that affect all social determinants of health and disproportionally affect health outcomes, herein referred to as vulnerable circumstances.2,3 The emergence of major outbreaks of SARS-CoV-2 infections in ethnocultural communities highlights both the vulnerable circumstances of these communities and the disparities they face in accessing high-quality, culturally appropriate information and support.47 Studies have shown substantial variation in deaths attributed to COVID-19 based on factors such as age, sex, ethnicity, length of time in Canada, income and education.811 However, given the well-known gap in reporting comprehensive COVID-19 data in relation to race and ethnicity, efforts to measure its impact are hampered.812 There is an urgent need to understand the evolving challenges of COVID-19 to inform action and public policy that can mitigate these challenges.To understand evolving situations of complexity and crisis, sensemaking, defined as “a continuous process to establish situational awareness,”13 is a crucial undertaking.14 Using participatory action research,1518 we sought to understand the evolving impacts of COVID-19 on ethnocultural communities to inform broader national efforts to migitate the impacts of COVID-19. Particularly, we sought to understand how the challenges of COVID-19 are entangled with contextual factors at multiple levels, how families and communities are leveraging strengths and social capital to adapt, and the role of cultural brokers in managing the crisis.  相似文献   
995.
Population studies have revealed that the fungal ectomycorrhizal morphospecies Tricholoma scalpturatum consists of at least two genetically distinct groups that occur sympatrically in several geographical areas. This discovery prompted us to examine species boundaries and relationships between members formerly assigned to T. scalpturatum and allied taxa using phylogenetic analyses. Sequence data were obtained from three nuclear DNA regions [internal transcribed spacer (ITS), gpd and tef], from 101 carpophores collected over a large geographical range in Western Europe, and some reference sequences from public databases. The ITS was also tested for its applicability as DNA barcode for species delimitation. Four highly supported phylogenetic clades were detected. The two previously detected genetic groups of T. scalpturatum were assigned to the phylospecies Tricholoma argyraceum and T. scalpturatum. The two remaining clades were referred to as Tricholoma cingulatum and Tricholoma inocybeoides. Unexpectedly, T. cingulatum showed an accelerated rate of evolution that we attributed to narrow host specialization. This study also reveals recombinant ITS sequences in T. inocybeoides, suggesting a hybrid origin. The ITS was a useful tool for the determination of species boundaries: the mean value of intraspecific genetic distances in the entire ITS region (including 5.8S rDNA) was <0.2%, whereas interspecific divergence estimates ranged from 1.78% to 4.22%. Apart from giving insights into the evolution of the T. scalpturatum complex, this study contributes to the establishment of a library of taxonomically verified voucher specimens, an a posteriori correlation between phenotype and genotype, and DNA barcoding of ectomycorrhizal fungi.  相似文献   
996.
Dispersal has recently gained much attention because of its crucial role in the conservation and evolution of species facing major environmental changes such as habitat loss and fragmentation, climate change, and their interactions. Butterflies have long been recognized as ideal model systems for the study of dispersal and a huge amount of data on their ability to disperse has been collected under various conditions. However, no single ‘best’ method seems to exist leading to the co‐occurrence of various approaches to study butterfly mobility, and therefore a high heterogeneity among data on dispersal across this group. Accordingly, we here reviewed the knowledge accumulated on dispersal and mobility in butterflies, to detect general patterns. This meta‐analysis specifically addressed two questions. Firstly, do the various methods provide a congruent picture of how dispersal ability is distributed across species? Secondly, is dispersal species‐specific? Five sources of data were analysed: multisite mark‐recapture experiments, genetic studies, experimental assessments, expert opinions, and transect surveys. We accounted for potential biases due to variation in genetic markers, sample sizes, spatial scales or the level of habitat fragmentation. We showed that the various dispersal estimates generally converged, and that the relative dispersal ability of species could reliably be predicted from their relative vagrancy (records of butterflies outside their normal habitat). Expert opinions gave much less reliable estimates of realized dispersal but instead reflected migration propensity of butterflies. Within‐species comparisons showed that genetic estimates were relatively invariable, while other dispersal estimates were highly variable. This latter point questions dispersal as a species‐specific, invariant trait.  相似文献   
997.

Background  

Mycoplasma pneumoniae is responsible for acute respiratory tract infections (RTIs) common in children and young adults. As M. pneumoniae is innately resistant to β-lactams antibiotics usually given as the first-line treatment for RTIs, specific and early diagnosis is important in order to select the right treatment. Serology is the most used diagnostic method for M. pneumoniae infections.  相似文献   
998.
The serine-rich repeat family of fimbriae play important roles in the pathogenesis of streptococci and staphylococci. Despite recent attention, their finer structural details and precise adhesion mechanisms have yet to be determined. Fap1 (Fimbriae-associated protein 1) is the major structural subunit of serine-rich repeat fimbriae from Streptococcus parasanguinis and plays an essential role in fimbrial biogenesis, adhesion, and the early stages of dental plaque formation. Combining multidisciplinary, high resolution structural studies with biological assays, we provide new structural insight into adhesion by Fap1. We propose a model in which the serine-rich repeats of Fap1 subunits form an extended structure that projects the N-terminal globular domains away from the bacterial surface for adhesion to the salivary pellicle. We also uncover a novel pH-dependent conformational change that modulates adhesion and likely plays a role in survival in acidic environments.  相似文献   
999.
Human prolactin (hPRL), a member of the family of hematopoietic cytokines, functions as both an endocrine hormone and autocrine/paracrine growth factor. We have previously demonstrated that recognition of the hPRL·receptor depends strongly on solution acidity over the physiologic range from pH 6 to pH 8. The hPRL·receptor binding interface contains four histidines whose protonation is hypothesized to regulate pH-dependent receptor recognition. Here, we systematically dissect its molecular origin by characterizing the consequences of His to Ala mutations on pH-dependent receptor binding kinetics, site-specific histidine protonation, and high resolution structures of the intermolecular interface. Thermodynamic modeling of the pH dependence to receptor binding affinity reveals large changes in site-specific protonation constants for a majority of interface histidines upon complexation. Removal of individual His imidazoles reduces these perturbations in protonation constants, which is most likely explained by the introduction of solvent-filled, buried cavities in the crystallographic structures without inducing significant conformational rearrangements.  相似文献   
1000.
Mast cell microlocalization to the airway smooth muscle (ASM) bundle is a key feature of asthma, but whether these mast cells have an altered phenotype is uncertain. In this paper, we report that in vivo, mast cells within the ASM bundle, in contrast to mast cells in the bronchial submucosa, commonly expressed fibroblast markers and the number of these cells was closely related to the degree of airway hyperresponsiveness. In vitro human lung mast cells and mast cell lines cultured with fibronectin or with primary human ASM cells acquired typical fibroblastic markers and morphology. This differentiation toward a fibroblastoid phenotype was mediated by ASM-derived extracellular matrix proteins, independent of cell adhesion molecule-1, and was attenuated by α5β1 blockade. Fibroblastoid mast cells demonstrated increased chymase expression and activation with exaggerated spontaneous histamine release. Together these data indicate that in asthma, ASM-derived extracellular matrix proteins mediate human mast cell transition to a fibroblastoid phenotype, suggesting that this may be pivotal in the development of airway dysfunction in asthma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号