首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1019篇
  免费   97篇
  2023年   11篇
  2022年   31篇
  2021年   32篇
  2020年   22篇
  2019年   32篇
  2018年   25篇
  2017年   29篇
  2016年   35篇
  2015年   72篇
  2014年   86篇
  2013年   82篇
  2012年   94篇
  2011年   70篇
  2010年   50篇
  2009年   45篇
  2008年   48篇
  2007年   51篇
  2006年   64篇
  2005年   40篇
  2004年   37篇
  2003年   47篇
  2002年   43篇
  2001年   7篇
  2000年   5篇
  1999年   7篇
  1998年   7篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1969年   2篇
  1963年   2篇
  1961年   1篇
  1957年   1篇
  1950年   1篇
排序方式: 共有1116条查询结果,搜索用时 296 毫秒
991.
Head and neck squamous cell carcinoma (HNSCC) is known to cause substantial immunosuppression. The present study was designed to characterize blood leukocyte activation in HNSCC and to investigate if the individual activation pattern could be related to tumor progress and survival. The leukocyte activation profile of HNSCC patients and healthy controls was assessed with flow cytometry. HNSCC patients displayed increased numbers of monocytes, neutrophils and total leukocytes as well as an enhanced neutrophil/lymphocyte ratio. In addition, patients had a higher percentage of CD69+, CD71+ and CD98+ T cell subsets and NK cells, and a reduced expression of L-selectin in CD14highCD16+ monocytes and neutrophils, when compared to controls. These changes could be correlated to both tumor burden and spread to lymph nodes. Among the cancer patients an increased neutrophil/lymphocyte ratio, a low neutrophil and CD14high CD16+ monocyte activation state and an elevated CD4/CD8 ratio were related to poor survival. In contrast, a high percentage of CD98+ Th cells appeared to be associated with a better outcome. Taken together, the present data indicate that HNSCC causes activation of blood leukocytes and that the individual activation pattern can be linked to prognosis.  相似文献   
992.
The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut colonization patterns change the composition of the resident microbiota and future immune system reactivity. Germ-free (GF) mice were either inoculated by single oral gavage of caecal content or let colonized by co-housing with specific pathogen-free (SPF) mice at different time points in the postnatal period. The microbiota composition was analyzed by denaturing gradient gel electrophoresis for 16S rRNA gene followed by principal component analysis. Furthermore, immune functions and cytokine concentrations were analyzed using flow cytometry, ELISA or multiplex bead assay. We found that a single oral inoculation of GF mice at three weeks of age permanently changed the gut microbiota composition, which was not possible to achieve at one week of age. Interestingly, the ex-GF mice inoculated at three weeks of age were also the only mice with an increased pro-inflammatory immune response. In contrast, the composition of the gut microbiota of ex-GF mice that were co-housed with SPF mice at different time points was similar to the gut microbiota in the barrier maintained SPF mice. The existence of a short GF postnatal period permanently changed levels of systemic regulatory T cells, NK and NKT cells, and cytokine production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system.  相似文献   
993.
Identifying external factors that can be used to control neural stem cells division and their differentiation to neurons, astrocytes and oligodendrocytes is of high scientific and clinical interest. Here we show that the Nogo-66 receptor interacting protein LINGO-1 is a potent regulator of neural stem cell maturation to neurons. LINGO-1 is expressed by cortical neural stem cells from E14 mouse embryos and inhibition of LINGO-1 during the first days of neural stem cell differentiation results in decreased neuronal maturation. Compared to neurons in control cultures, which after 6 days of differentiation have long extending neurites, neurons in cultures treated with anti-LINGO-1 antibodies retain an immature, round phenotype with only very short processes. Furthermore, neutralization of LINGO-1 results in a threefold increase in βIII tubulin-positive cells compared to untreated control cultures. By using BrdU incorporation assays we show that the immature neurons in LINGO-1 neutralized cultures are dividing neuroblasts. In contrast to control cultures, in which no cells were double positive for βIII tubulin and BrdU, 36% of the neurons in cultures treated with anti-LINGO-1 antibodies were proliferating after three days of differentiation. TUNEL assays revealed that the amount of cells going through apoptosis during the early phase of differentiation was significantly decreased in cultures treated with anti-LINGO-1 antibodies compared to untreated control cultures. Taken together, our results demonstrate a novel role for LINGO-1 in neural stem cell differentiation to neurons and suggest a possibility to use LINGO-1 inhibitors to compensate for neuronal cell loss in the injured brain.  相似文献   
994.

Background

The aim of this study was to investigate therapeutic efficacy and normal tissue toxicity of single dosage and fractionated targeted alpha therapy (TAT) in mice with HER2-expressing breast and ovarian cancer xenografts using the low dose rate radioimmunoconjugate 227Th-DOTA-p-benzyl-trastuzumab.

Methodology/Principal Findings

Nude mice carrying HER2-overexpressing subcutaneous SKOV-3 or SKBR-3 xenografts were treated with 1000 kBq/kg 227Th-trastuzumab as single injection or four injections of 250 kBq/kg with intervals of 4–5 days, 2 weeks, or 4 weeks. Control animals were treated with normal saline or unlabeled trastuzumab. In SKOV-3 xenografts tumor growth to 10-fold size was delayed (p<0.01) and survival with tumor diameter less than 16 mm was prolonged (p<0.05) in all TAT groups compared to the control groups. No statistically significant differences were seen among the treated groups. In SKBR-3 xenografts tumor growth to 10-fold size was delayed in the single injection and 4–5 days interval groups (p<0.001) and all except the 4 weeks interval TAT group showed improved survival to the control groups (p<0.05). Toxicity was assessed by blood cell counts, clinical chemistry measurements and body weight. Transient reduction in white blood cells was seen for the single injection and 4–5 days interval groups (p<0.05). No significant changes were seen in red blood cells, platelets or clinical chemistry parameters. Survival without life threatening loss of body weight was significantly prolonged in 4 weeks interval group compared to single injection group (p<0.05) for SKOV-3 animals and in 2 weeks interval group compared with the 4–5 days interval groups (p<0.05) for SKBR-3 animals.

Conclusions/Significance

The same concentration of radioactivity split into several fractions may improve toxicity of 227Th-radioimmunotherapy while the therapeutic effect is maintained. Thus, it might be possible to increase the cumulative absorbed radiation dose to tumor with acceptable toxicity by fractionation of the dosage.  相似文献   
995.

Background

Dengue is the most important mosquito-borne viral disease. In the absence of specific drugs or vaccines, control focuses on suppressing the principal mosquito vector, Aedes aegypti, yet current methods have not proven adequate to control the disease. New methods are therefore urgently needed, for example genetics-based sterile-male-release methods. However, this requires that lab-reared, modified mosquitoes be able to survive and disperse adequately in the field.

Methodology/Principal Findings

Adult male mosquitoes were released into an uninhabited forested area of Pahang, Malaysia. Their survival and dispersal was assessed by use of a network of traps. Two strains were used, an engineered ‘genetically sterile’ (OX513A) and a wild-type laboratory strain, to give both absolute and relative data about the performance of the modified mosquitoes. The two strains had similar maximum dispersal distances (220 m), but mean distance travelled of the OX513A strain was lower (52 vs. 100 m). Life expectancy was similar (2.0 vs. 2.2 days). Recapture rates were high for both strains, possibly because of the uninhabited nature of the site.

Conclusions/Significance

After extensive contained studies and regulatory scrutiny, a field release of engineered mosquitoes was safely and successfully conducted in Malaysia. The engineered strain showed similar field longevity to an unmodified counterpart, though in this setting dispersal was reduced relative to the unmodified strain. These data are encouraging for the future testing and implementation of genetic control strategies and will help guide future field use of this and other engineered strains.  相似文献   
996.
The Human Papillomavirus (HPV) is a sexually transmitted organism associated with Cervical Intraepithelial Neoplasia (CIN) and cervical cancer, the second main cause of malignancy in women worldwide. The virus itself, however, is not enough to cause lesions on the cervix. Several studies suggest that some polymorphic sites changes the cytokines levels and influence the cancer development in HPV infected patients. In this study, we evaluated the presence of functional polymorphisms at +874 (T/A) IFNG and +1188 (A/C) IL-12B genes in cervical smears samples from 76 healthy women and 162 women, HPV positive, with CIN lesion--CIN I (45), CIN II (55), CIN III (53) and cervical cancer (9)--in Brazilian population. There was no significant differences in genotype (p = 0.4192) and allele (p = 0.370; OR = 1.20) distributions between CIN patients and control groups on IFNG allelic polymorphism. Moreover, for IL-12B gene, there was a significant difference in genotype (p = 0.015) and allele distribution (p = 0.014; OR = 0.5754) between the groups. When samples were stratified according to grade of cervical lesion, the AA genotype and A allele were less frequent in the group with low-grade cervical lesions than in group with high-grade cervical lesions (p = 0.0036 and p = 0.0010; OR = 0.3819, respectively), suggesting that the C allele (mutant) may protect against the emergence of CIN lesions and its progression.  相似文献   
997.
The Gram-positive, spore-forming bacterium Paenibacillus larvae is the primary bacterial pathogen of honeybee brood and the causative agent of American foulbrood disease (AFB). One of the feasible alternative treatments being used for their control of this disease is essential oils. In this study in vitro antimicrobial activity of Andiroba and Copaíba essential oils against Paenibacillus species, including P. larvae was evaluated. Minimal inhibitory concentration (MIC) in Mueller-Hinton broth by the microdilution method was assessed. Andiroba registered MIC values of 1.56-25%, while the MICs values obtained for Copaíba oil were of 1.56-12.5%. In order to determine the time-response effect of essential oils on P. larvae, this microorganism was exposed to the oils for up to 48 h. After 24 h treatment with Andiroba oil and after 48 h treatment with Copaíba oil no viable cells of P. larvae ATCC 9545 were observed. The possible toxic effect of essential oils were assessed by the spraying application method of the same concentrations of MICs. Bee mortality was evident only in treatment with Andiroba oil and the Copaíba oil shows no toxic effects after 10 days of observation. Taking together ours results showed for the first time that these oils presented a high activity against Paenibacillus species showing that Copaíba oil may be a candidate for the treatment or prevention of AFB.  相似文献   
998.
Traditional predation theory assumes that prey density is the primary determinant of kill rate. More recently, the ratio of prey‐to‐predator has been shown to be a better predictor of kill rate. However, the selective behavior of many predators also suggests that age structure of the prey population should be an important predictor of kill rate. We compared wolf–moose predation dynamics in two sites, south‐central Scandinavia (SCA) and Isle Royale, Lake Superior, North America (IR), where prey density was similar, but where prey age structure and prey‐to‐predator ratio differed. Per capita kill rates of wolves preying on moose in SCA are three times greater than on IR. Because SCA and IR have similar prey densities differences in kill rate cannot be explained by prey density. Instead, differences in kill rate are explained by differences in the ratio of prey‐to‐predator, pack size and age structure of the prey populations. Although ratio‐dependent functional responses was an important variable for explaining differences in kill rates between SCA and IR, kill rates tended to be higher when calves comprised a greater portion of wolves’ diet (p =0.05). Our study is the first to suggest how age structure of the prey population can affect kill rate for a mammalian predator. Differences in age structure of the SCA and IR prey populations are, in large part, the result of moose and forests being exploited in SCA, but not in IR. While predator conservation is largely motivated by restoring trophic cascades and other top–down influences, our results show how human enterprises can also alter predation through bottom–up processes.  相似文献   
999.
Highlights? M. tuberculosis FadD13 is a peripheral membrane protein ? Mutagenesis reveals an arginine-rich patch as the site for membrane interaction ? A hydrophobic tunnel extends from the active site to the positively charged patch ? The architecture lets substrates reside partly in the membrane during catalysis  相似文献   
1000.
The fluid that surrounds the embryo in the uterus contains important nourishing factors and secretions. To maintain the distinct microenvironment in the uterine lumen, the tight junctions between uterine epithelial cells are remodeled to decrease paracellular movement of molecules and solutes. Modifications to tight junctions between uterine epithelial cells is a common feature of pregnancy in eutherian mammals, regardless of placental type. Here we used immunofluorescence microscopy and western blot analysis to describe distributional changes to tight junctional proteins, claudin‐1, ‐3, ‐4, and ‐5, in the uterine epithelial cells of a marsupial species, Sminthopsis crassicaudata. Immunofluorescence microscopy revealed claudin‐1, ‐3, and ‐5 in the tight junctions of the uterine epithelium of S. crassicaudata during pregnancy. These specific claudins are associated with restricting passive movement of fluid between epithelial cells in eutherians. Hence, their function during pregnancy in S. crassicaudata may be to maintain the uterine luminal content surrounding developing embryos. Claudin‐4 disappears from all uterine regions of S. crassicaudata at the time of implantation, in contrast with the distribution of this claudin in some eutherian mammals. We conclude that like eutherian mammals, distributional changes to claudins in the uterine epithelial cells of S. crassicaudata are necessary to support pregnancy. However, the combination of individual claudin isoforms in the tight junctions of the uterine epithelium of S. crassicaudata differs from that of eutherian mammals. Our findings suggest that the precise permeability of the paracellular pathway of the uterine epithelium is species‐specific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号