首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1235篇
  免费   94篇
  2024年   3篇
  2023年   21篇
  2022年   28篇
  2021年   68篇
  2020年   36篇
  2019年   58篇
  2018年   52篇
  2017年   54篇
  2016年   75篇
  2015年   93篇
  2014年   113篇
  2013年   100篇
  2012年   115篇
  2011年   110篇
  2010年   71篇
  2009年   56篇
  2008年   41篇
  2007年   47篇
  2006年   26篇
  2005年   23篇
  2004年   23篇
  2003年   18篇
  2002年   16篇
  2001年   3篇
  2000年   6篇
  1999年   8篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1986年   3篇
  1985年   2篇
  1976年   5篇
  1975年   2篇
  1974年   1篇
  1973年   4篇
  1972年   3篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1955年   2篇
  1949年   1篇
  1943年   1篇
  1913年   1篇
排序方式: 共有1329条查询结果,搜索用时 15 毫秒
951.
Biodegradation of (E)-phytol [3,7,11, 15-tetramethylhexadec-2(E)-en-1-ol] by two bacterial communities isolated from recent marine sediments under aerobic and denitrifying conditions was studied at 20 degrees C. This isoprenoid alcohol is metabolized efficiently by these two bacterial communities via 6,10, 14-trimethylpentadecan-2-one and (E)-phytenic acid. The first step in both aerobic and anaerobic bacterial degradation of (E)-phytol involves the transient production of (E)-phytenal, which in turn can be abiotically converted to 6,10,14-trimethylpentadecan-2-one. Most of the isoprenoid metabolites identified in vitro could be detected in a fresh sediment core collected at the same site as the sediments used for the incubations. Since (E)-phytenal is less sensitive to abiotic degradation at the temperature of the sediments (15 degrees C), the major part of (E)-phytol appeared to be biodegraded in situ via (E)-phytenic acid. (Z)- and (E)-phytenic acids are present in particularly large quantities in the upper section of the core, and their concentrations quickly decrease with depth in the core. This degradation (which takes place without significant production of phytanic acid) is attributed to the involvement of alternating beta-decarboxymethylation and beta-oxidation reaction sequences induced by denitrifiers. Despite the low nitrate concentration of marine sediments, denitrifying bacteria seem to play a significant role in the mineralization of (E)-phytol.  相似文献   
952.
Hypertension commonly occurs in conjunction with insulin resistance and other components of the cardiometabolic syndrome. Insulin resistance plays a significant role in the relationship between hypertension, Type 2 diabetes mellitus, chronic kidney disease, and cardiovascular disease. There is accumulating evidence that insulin resistance occurs in cardiovascular and renal tissue as well as in classical metabolic tissues (i.e., skeletal muscle, liver, and adipose tissue). Activation of the renin-angiotensin-aldosterone system and subsequent elevations in angiotensin II and aldosterone, as seen in cardiometabolic syndrome, contribute to altered insulin/IGF-1 signaling pathways and reactive oxygen species formation to induce endothelial dysfunction and cardiovascular disease. This review examines currently understood mechanisms underlying the development of resistance to the metabolic actions of insulin in cardiovascular as well as skeletal muscle tissue.  相似文献   
953.
An ADAM metalloprotease is a Cry3Aa Bacillus thuringiensis toxin receptor   总被引:2,自引:0,他引:2  
Bacillus thuringiensis insecticidal proteins toxic action relies on the interaction with receptor molecules on insect midgut target cells. Here, we describe an ADAM metalloprotease as a novel type of B. thuringiensis toxin receptor on the basis of the following data: (i) by ligand blot and N-terminal analysis, we detected a Colorado potato beetle Cry3Aa toxin binding molecule that shares homology with an ADAM10 metalloprotease; (ii) Colorado potato beetle brush border membrane vesicles display ADAM activity since it cleaves an ADAM fluorogenic substrate; (iii) Cry3Aa acts as a competitor of the cleavage of the ADAM fluorogenic substrate; (iv) Cry3Aa sequence contains the recognition motif R(345)FQPGYYGND(354) present in ADAM10 substrates. Accordingly, a peptide representative of the recognition motif localized within loop 1 of Cry3Aa domain II (Ac-F(341)HTRFQPGYYGNDSFN(358)-NH(2)) effectively prevented Cry3Aa proteolytic processing and nearly abolished pore formation, evidencing the functional significance of the Cry3Aa-ADAM interaction in relation to this toxin mode of action.  相似文献   
954.
955.
The V2 vasopressin receptor (V2R) activates the mitogen activated protein kinases (MAPK) ERK1/2 through a mechanism involving the scaffolding protein beta arrestin. Here we report that this activating pathway is independent of G alpha s, G alpha i, G alpha q or G betagamma and that the V2R-mediated activation of G alpha s inhibits ERK1/2 activity in a cAMP/PKA-dependent manner. In the HEK293 cells studied, the beta arrestin-promoted activation was found to dominate over the PKA-mediated inhibition of the pathway, leading to a strong vasopressin-stimulated ERK1/2 activation. Despite the strong MAPK activation and in contrast with other GPCR, V2R did not induce any significant increase in DNA synthesis, consistent with the notion that the stable interaction between V2R and beta arrestin prevents signal propagation to the nucleus. Beta arrestin was found to be essential for the ERK1/2 activation, indicating that the recruitment of the scaffolding protein is necessary and sufficient to initiate the signal in the absence of any other stimulatory cues. Based on the use of selective pharmacological inhibitors, dominant negative mutants and siRNA, we conclude that the beta arrestin-dependent activation of ERK1/2 by the V2R involves c-Src and a metalloproteinase-dependent trans-activation event. These findings demonstrate that beta arrestin is a genuine signalling initiator that can, on its own, engage a MAPK activation machinery upon stimulation of a GPCR by its natural ligand.  相似文献   
956.
The use of phosphate rocks as low-solubility phosphorus fertilizers has been promoted to reduce the environmental impacts of agriculture, but adequate nutrient uptake by plants depends on solubilization of the rock, driven by soil microorganisms. Here, investigation was made of the microbial solubilization of low-solubility phosphate rocks, together with simultaneous bioprotective action involving the biocontrol of microorganisms. The aim was to enhance function and value by delivering two effects using a single bio-based product, in accordance with the concept of a “bioreactor-in-a-granule” system. A composite structure was developed, based on a starch matrix, comprising a combination of Trichoderma asperelloides, as a biocontrol agent, and Aspergillus niger, as an acidulant. A significant increase of up to 150% in P solubilization was achieved, indicating the positive effect of the microorganism-composite interaction. In vitro assays showed that the ability of T. asperelloides to inhibit Fusarium oxysporum mycelial growth was maintained in the presence of A. niger. Moreover, the estimated cost of the composite granule (0.35 US$/kg of product on a dry basis) revealed competitive. The results indicated that the association of T. asperelloides and A. niger is an effective way to increase nutrient availability and to inhibit plant pathogens, opening up possibilities for the design of multifunctional bio-based fertilizer composites.  相似文献   
957.
958.
Plant and Soil - Cropping systems using forage grasses as cover crops have been effective in soil conservation and nutrient cycling, but root persistence of ruzigrass (Urochloa ruziziensis) is...  相似文献   
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号