首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4851篇
  免费   495篇
  国内免费   1篇
  5347篇
  2022年   39篇
  2021年   83篇
  2020年   56篇
  2019年   54篇
  2018年   79篇
  2017年   75篇
  2016年   89篇
  2015年   160篇
  2014年   178篇
  2013年   218篇
  2012年   299篇
  2011年   278篇
  2010年   188篇
  2009年   140篇
  2008年   175篇
  2007年   197篇
  2006年   166篇
  2005年   181篇
  2004年   163篇
  2003年   136篇
  2002年   135篇
  2001年   120篇
  2000年   96篇
  1999年   87篇
  1998年   44篇
  1997年   51篇
  1996年   37篇
  1994年   34篇
  1993年   47篇
  1992年   70篇
  1991年   60篇
  1990年   79篇
  1989年   59篇
  1988年   58篇
  1987年   43篇
  1986年   44篇
  1985年   62篇
  1984年   47篇
  1983年   48篇
  1982年   42篇
  1979年   66篇
  1978年   52篇
  1977年   48篇
  1976年   45篇
  1974年   43篇
  1973年   40篇
  1972年   42篇
  1971年   39篇
  1970年   34篇
  1969年   36篇
排序方式: 共有5347条查询结果,搜索用时 11 毫秒
71.
Adenomatous polyposis coli protein (APC) translocates to, and stabilizes, the plus-ends of microtubules. In microtubule-dependent cellular protrusions, APC frequently accumulates in peripheral clusters at the basal membrane. APC targeting to membrane clusters is important for cell migration, but the localization mechanism is poorly understood. In this study, we performed deletion mapping and defined a minimal sequence (amino acids 1-2226) that efficiently targets APC to membrane clusters. This sequence lacks DLG-1 and EB1 binding sites, suggesting that these partners are not absolutely required for APC membrane targeting. A series of APC sequences were transiently expressed in cells and compared for their ability to compete endogenous APC at the membrane; potent inhibition of endogenous APC targeting was elicited by the Armadillo- (binds KAP3A, B56alpha, and ASEF) and beta-catenin-binding domains. The Armadillo domain was predicted to inhibit APC membrane localization through sequestration of the kinesin-KAP3A complex. The role of beta-catenin in APC membrane localization was unexpected but affirmed by overexpressing the APC binding sequence of beta-catenin, which similarly reduced APC membrane staining. Furthermore, we used RNA interference to show that loss of beta-catenin reduced APC at membrane clusters in migrating cells. In addition, we report that transiently expressed APC-yellow fluorescent protein co-localized with beta-catenin, KAP3A, EB1, and DLG-1 at membrane clusters, but only beta-catenin stimulated APC anchorage at the membrane. Our findings identify beta-catenin as a regulator of APC targeting to membrane clusters and link these two proteins to cell migration.  相似文献   
72.
The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction‐site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome‐wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.  相似文献   
73.
Multiple studies have shown that dentin matrix protein 1 (DMP1) is essential for bone and dentin mineralization. After post-translational proteolytic cleavage, DMP1 exists within the extracellular matrix of bone and dentin as an NH2-terminal fragment, a COOH-terminal fragment, and the proteoglycan form of the NH2-terminal fragment (DMP1-PG). To begin to assess the biological function of each fragment, we evaluated the distribution of both fragments in the rat tooth and bone using antibodies specific to the NH2-terminal and COOH-terminal regions of DMP1 and confocal microscopy. In rat first molar organs, the NH2-terminal fragment localized to predentin, whereas the COOH-terminal fragment was mainly restricted to mineralized dentin. In the growth plate of bone, the NH2-terminal fragment appeared in the proliferation and hypertrophic zones, whereas the COOH-terminal fragment occupied the ossification zone. Forster resonance energy transfer analysis showed colocalization of both fragments of DMP1 in odontoblasts and predentin, as well as hypertrophic chondrocytes within the growth plates of bone. The biochemical analysis of bovine teeth showed that predentin is rich in DMP1-PG, whereas mineralized dentin primarily contains the COOH-terminal fragment. We conclude that the differential patterns of expression of NH2-terminal and COOH-terminal fragments of DMP1 reflect their potentially distinct roles in the biomineralization of dentin and bone matrices.  相似文献   
74.
Variation in the shell colour and banding polymorphism in the land snail Cepaea nemoralis was studied in 260 populations in the region of Gdańsk, northern Poland. Unlike in other regions of Poland, many populations contain brown shells. Populations from shaded habitats have higher frequencies of brown than those from open and intermediate habitats, largely at the expense of yellow shells. Nearly all brown shells are also unbanded. Apart from this disequilibrium, banding morphs among yellow and pink shells show no relationship to habitat. There are no broad geographical trends in morph-frequencies, but there are very strong correlations among populations very close together, revealed both by pairwise analysis and Moran’s I. Principal Component Analyses show that these correlations relate to overall genetic similarity at the loci involved. The populations are at the north-eastern limits of the species’ range; habitats are mostly anthropogenic, and comparisons with studies in two urban areas (Wrocław, SW Poland, and Sheffield, central England) suggest that the patterns of variation seen are a product of human transport of propagules followed by local dispersal. The effect of habitat here is much less marked than in regions much further west, but it indicates that natural selection has occurred.  相似文献   
75.
76.
77.
78.
Gene expression monitoring using gene expression microarrays represents an extremely powerful technology for gene discovery in a variety of systems. We describe the results of seven experiments using Incyte GEM technology to compile a proprietary portfolio of data concerning differential gene expression in six different models of neuronal differentiation and regeneration, and recovery from injury or disease. Our first two experiments cataloged genes significantly up- or down-regulated during two phases of the retinoic acid-induced differentiation of the embryonal carcinoma line Ntera-2. To identify genes involved in neuronal regeneration we performed three GEM experiments, which included changes in gene expression in rat dorsal root ganglia during the healing of experimentally injured sciatic nerve, in regenerating neonatal opossum spinal cord, and during lipopolysaccharide stimulation of primary cultures of rat Schwann cells. Finally we have monitored genes involved in the recovery phase of the inflammatory disease of the rat spinal cord, experimental allergic encephalomyelitis, as well as those responsible for protection from oxidative stress in a glutamate-resistant rat hippocampal cell line. Analysis of the results of the approximately 70,000 data points collected is presented.  相似文献   
79.
BackgroundDengue viruses (DENV) are the causative agents of dengue, the world’s most prevalent arthropod-borne disease with around 40% of the world’s population at risk of infection annually. Wolbachia pipientis, an obligate intracellular bacterium, is being developed as a biocontrol strategy against dengue because it limits replication of the virus in the mosquito. The Wolbachia strain wMel, which has been introduced into the mosquito vector, Aedes aegypti, has been shown to invade and spread to near fixation in field releases. Standard measures of Wolbachia’s efficacy for blocking virus replication focus on the detection and quantification of virus in mosquito tissues. Examining the saliva provides a more accurate measure of transmission potential and can reveal the extrinsic incubation period (EIP), that is, the time it takes virus to arrive in the saliva following the consumption of DENV viremic blood. EIP is a key determinant of a mosquito’s ability to transmit DENVs, as the earlier the virus appears in the saliva the more opportunities the mosquito will have to infect humans on subsequent bites.Conclusions/SignificanceThe saliva-based traits reported here offer more disease-relevant measures of Wolbachia’s effects on the vector and the virus. The lengthening of EIP highlights another means, in addition to the reduction of infection frequencies and DENV titers in mosquitoes, by which Wolbachia should operate to reduce DENV transmission in the field.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号