全文获取类型
收费全文 | 3253篇 |
免费 | 283篇 |
国内免费 | 2篇 |
专业分类
3538篇 |
出版年
2022年 | 35篇 |
2021年 | 70篇 |
2020年 | 46篇 |
2019年 | 45篇 |
2018年 | 60篇 |
2017年 | 62篇 |
2016年 | 72篇 |
2015年 | 120篇 |
2014年 | 137篇 |
2013年 | 165篇 |
2012年 | 223篇 |
2011年 | 211篇 |
2010年 | 143篇 |
2009年 | 93篇 |
2008年 | 132篇 |
2007年 | 128篇 |
2006年 | 117篇 |
2005年 | 126篇 |
2004年 | 112篇 |
2003年 | 80篇 |
2002年 | 92篇 |
2001年 | 70篇 |
2000年 | 54篇 |
1999年 | 48篇 |
1998年 | 28篇 |
1997年 | 30篇 |
1996年 | 24篇 |
1995年 | 19篇 |
1993年 | 26篇 |
1992年 | 38篇 |
1991年 | 37篇 |
1990年 | 27篇 |
1989年 | 24篇 |
1988年 | 29篇 |
1987年 | 27篇 |
1986年 | 23篇 |
1985年 | 39篇 |
1984年 | 23篇 |
1983年 | 28篇 |
1979年 | 28篇 |
1978年 | 31篇 |
1977年 | 23篇 |
1976年 | 21篇 |
1974年 | 20篇 |
1973年 | 21篇 |
1972年 | 22篇 |
1971年 | 21篇 |
1969年 | 18篇 |
1968年 | 20篇 |
1966年 | 19篇 |
排序方式: 共有3538条查询结果,搜索用时 15 毫秒
31.
32.
33.
Type 1 insulin-like growth factor receptor (IGF1R) is a membrane-spanning glycoprotein of the insulin receptor family that has been implicated in a variety of cancers. The key questions related to molecular mechanisms governing ligand recognition by IGF1R remain unanswered, partly due to the lack of testable structural models of apo or ligand-bound receptor complexes. Using a homology model of the IGF1R ectodomain IGF1RΔβ, we present the first experimentally consistent all-atom structural models of IGF1/IGF1RΔβ and IGF2/IGF1RΔβ complexes. Our explicit-solvent molecular dynamics (MD) simulation of apo-IGF1RΔβ shows that it displays asymmetric flexibility mechanisms that result in one of two binding pockets accessible to growth factors IGF1 and IGF2, as demonstrated via an MD-assisted Monte Carlo docking procedure. Our MD-generated ensemble of structures of apo and IGF1-bound IGF1RΔβ agrees reasonably well with published small-angle X-ray scattering data. We observe simultaneous contacts of each growth factor with sites 1 and 2 of IGF1R, suggesting cross-linking of receptor subunits. Our models provide direct evidence in favor of suggested electrostatic complementarity between the C-domain (IGF1) and the cysteine-rich domain (IGF1R). Our IGF1/IGF1RΔβ model provides structural bases for the observation that a single IGF1 molecule binds to IGF1RΔβ at low concentrations in small-angle X-ray scattering studies. We also suggest new possible structural bases for differences in the affinities of insulin, IGF1, and IGF2 for their noncognate receptors. 相似文献
34.
Raghwani J Rambaut A Holmes EC Hang VT Hien TT Farrar J Wills B Lennon NJ Birren BW Henn MR Simmons CP 《PLoS pathogens》2011,7(6):e1002064
Dengue is one of the most important infectious diseases of humans and has spread throughout much of the tropical and subtropical world. Despite this widespread dispersal, the determinants of dengue transmission in endemic populations are not well understood, although essential for virus control. To address this issue we performed a phylogeographic analysis of 751 complete genome sequences of dengue 1 virus (DENV-1) sampled from both rural (Dong Thap) and urban (Ho Chi Minh City) populations in southern Viet Nam during the period 2003-2008. We show that DENV-1 in Viet Nam exhibits strong spatial clustering, with likely importation from Cambodia on multiple occasions. Notably, multiple lineages of DENV-1 co-circulated in Ho Chi Minh City. That these lineages emerged at approximately the same time and dispersed over similar spatial regions suggests that they are of broadly equivalent fitness. We also observed an important relationship between the density of the human host population and the dispersion rate of dengue, such that DENV-1 tends to move from urban to rural populations, and that densely populated regions within Ho Chi Minh City act as major transmission foci. Despite these fluid dynamics, the dispersion rates of DENV-1 are relatively low, particularly in Ho Chi Minh City where the virus moves less than an average of 20 km/year. These low rates suggest a major role for mosquito-mediated dispersal, such that DENV-1 does not need to move great distances to infect a new host when there are abundant susceptibles, and imply that control measures should be directed toward the most densely populated urban environments. 相似文献
35.
36.
Apurinic/apyrimidinic (AP or abasic) sites are among the most abundant DNA lesions. Numerous proteins within different organisms ranging from bacteria to human have been demonstrated to react with AP sites to form covalent Schiff base DNA–protein cross-links (DPCs). These DPCs are unstable due to their spontaneous hydrolysis, but the half-lives of these cross-links can be as long as several hours. Such long-lived DPCs are extremely toxic due to their large sizes, which physically block DNA replication. Therefore, these adducts must be promptly eradicated to maintain genome integrity. Herein, we used in vitro reconstitution experiments with chemically synthesized, stable, and site-specific Schiff base AP-peptide/protein cross-link analogs to demonstrate for the first time that this type of DPC can be repaired by Escherichia coli (E. coli) long-patch base excision repair. We demonstrated that the repair process requires a minimum of three enzymes and five consecutive steps, including: (1) 5′-DNA strand incision of the DPC by endonuclease IV; (2 to 4) strand-displacement DNA synthesis, removal of the 5′-deoxyribose phosphate-peptide/protein adduct-containing flap, and gap-filling DNA synthesis by DNA polymerase I; and (5) strand ligation by a ligase. We further demonstrated that endonuclease IV plays a major role in incising an AP-peptide cross-link within E. coli cell extracts. We also report that eradicating model AP-protein (11.2–36.1 kDa) DPCs is less efficient than that of an AP-peptide10mer cross-link, supporting the emerging model that proteolysis is likely required for efficient DPC repair. 相似文献
37.
Jonathan R. Peterson Shailesh Agarwal R. Cameron Brownley Shawn J. Loder Kavitha Ranganathan Paul S. Cederna Yuji Mishina Stewart C. Wang Benjamin Levi 《Journal of visualized experiments : JoVE》2015,(102)
Heterotopic ossification (HO) is the formation of bone outside of the skeleton which forms following major trauma, burn injuries, and orthopaedic surgical procedures. The majority of animal models used to study HO rely on the application of exogenous substances, such as bone morphogenetic protein (BMP), exogenous cell constructs, or genetic mutations in BMP signaling. While these models are useful they do not accurately reproduce the inflammatory states that cause the majority of cases of HO. Here we describe a burn/tenotomy model in mice that reliably produces focused HO. This protocol involves creating a 30% total body surface area partial thickness contact burn on the dorsal skin as well as division of the Achilles tendon at its midpoint. Relying solely on traumatic injury to induce HO at a predictable location allows for time-course study of endochondral heterotopic bone formation from intrinsic physiologic processes and environment only. This method could prove instrumental in understanding the inflammatory and osteogenic pathways involved in trauma-induced HO. Furthermore, because HO develops in a predictable location and time-course in this model, it allows for research to improve early imaging strategies and treatment modalities to prevent HO formation. 相似文献
38.
Sharma M Leung L Brocardo M Henderson J Flegg C Henderson BR 《The Journal of biological chemistry》2006,281(25):17140-17149
Adenomatous polyposis coli protein (APC) translocates to, and stabilizes, the plus-ends of microtubules. In microtubule-dependent cellular protrusions, APC frequently accumulates in peripheral clusters at the basal membrane. APC targeting to membrane clusters is important for cell migration, but the localization mechanism is poorly understood. In this study, we performed deletion mapping and defined a minimal sequence (amino acids 1-2226) that efficiently targets APC to membrane clusters. This sequence lacks DLG-1 and EB1 binding sites, suggesting that these partners are not absolutely required for APC membrane targeting. A series of APC sequences were transiently expressed in cells and compared for their ability to compete endogenous APC at the membrane; potent inhibition of endogenous APC targeting was elicited by the Armadillo- (binds KAP3A, B56alpha, and ASEF) and beta-catenin-binding domains. The Armadillo domain was predicted to inhibit APC membrane localization through sequestration of the kinesin-KAP3A complex. The role of beta-catenin in APC membrane localization was unexpected but affirmed by overexpressing the APC binding sequence of beta-catenin, which similarly reduced APC membrane staining. Furthermore, we used RNA interference to show that loss of beta-catenin reduced APC at membrane clusters in migrating cells. In addition, we report that transiently expressed APC-yellow fluorescent protein co-localized with beta-catenin, KAP3A, EB1, and DLG-1 at membrane clusters, but only beta-catenin stimulated APC anchorage at the membrane. Our findings identify beta-catenin as a regulator of APC targeting to membrane clusters and link these two proteins to cell migration. 相似文献
39.
Polymerization of actin filaments is necessary for both protrusion of the leading edge of crawling cells and propulsion of certain intracellular pathogens, and it is sufficient for generating force for bacterial motility in vitro. Motile intracellular pathogens are associated with actin-rich comet tails containing many of the same molecular components present in lamellipodia, and this suggests that these two systems use a similar mechanism for motility. However, available structural evidence suggests that the organization of comet tails differs from that of lamellipodia. Actin filaments in lamellipodia form branched arrays, which are thought to arise by dendritic nucleation mediated by the Arp2/3 complex. In contrast, comet tails have been variously described as consisting of short, randomly oriented filaments, with a higher degree of alignment at the periphery, or as containing long, straight axial filaments with a small number of oblique filaments. Because the assembly of pathogen-associated comet tails has been used as a model system for lamellipodial protrusion, it is important to resolve this apparent discrepancy. Here, using a platinum replica approach, we show that actin filament arrays in comet tails in fact have a dendritic organization with the Arp2/3 complex localizing to Y-junctions as in lamellipodia. Thus, comet tails and lamellipodia appear to share a common dendritic nucleation mechanism for protrusive motility. However, comet tails differ from lamellipodia in that their actin filaments are usually twisted and appear to be under significant torsional stress. 相似文献
40.
Cameron SJ Itoh S Baines CP Zhang C Ohta S Che W Glassman M Lee JD Yan C Yang J Abe J 《FEBS letters》2004,566(1-3):255-260
Big MAP kinase 1 (BMK1/ERK5) plays a critical role in pre-natal development of the cardiovascular system and post-natal eccentric hypertrophy of the heart. Of the two isoforms upstream of MAPK-kinase 5 (MEK5) known to exist, only the longer MEK5alpha isoform potently activates BMK1. We generated cardiac-specific constitutively active form of the MEK5alpha (CA-MEK5alpha transgenic (Tg) mice), and observed a 3 to 4-fold increase in endogenous BMK1 activation and hyperphosphorylation of connexin 43 in the ventricles of the Tg compared to wild-type mice. The CA-MEK5alpha-Tg-mice demonstrated a profoundly accelerated recovery of left ventricular developed pressure after ischemia/reperfusion. We propose a novel role for BMK1 in protecting the heart from ischemia/reperfusion-induced cardiac injury. 相似文献