首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96466篇
  免费   598篇
  国内免费   813篇
  2022年   36篇
  2021年   77篇
  2020年   48篇
  2019年   46篇
  2018年   11884篇
  2017年   10711篇
  2016年   7512篇
  2015年   709篇
  2014年   419篇
  2013年   448篇
  2012年   4414篇
  2011年   12997篇
  2010年   12125篇
  2009年   8313篇
  2008年   9910篇
  2007年   11481篇
  2006年   371篇
  2005年   629篇
  2004年   1080篇
  2003年   1101篇
  2002年   868篇
  2001年   329篇
  2000年   226篇
  1999年   83篇
  1998年   37篇
  1997年   57篇
  1996年   39篇
  1995年   23篇
  1994年   30篇
  1993年   60篇
  1992年   69篇
  1991年   78篇
  1990年   40篇
  1989年   39篇
  1988年   56篇
  1987年   42篇
  1986年   30篇
  1985年   44篇
  1984年   34篇
  1983年   48篇
  1982年   24篇
  1979年   32篇
  1978年   31篇
  1977年   23篇
  1976年   23篇
  1973年   24篇
  1972年   273篇
  1971年   298篇
  1965年   29篇
  1962年   29篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
951.
952.
Receptor avidity through multivalency is a highly sought‐after property of ligands. While readily available in nature in the form of bivalent antibodies, this property remains challenging to engineer in synthetic molecules. The discovery of several bivalent venom peptides containing two homologous and independently folded domains (in a tandem repeat arrangement) has provided a unique opportunity to better understand the underpinning design of multivalency in multimeric biomolecules, as well as how naturally occurring multivalent ligands can be identified. In previous work, we classified these molecules as a larger class termed secreted cysteine‐rich repeat‐proteins (SCREPs). Here, we present an online resource; ScrepYard, designed to assist researchers in identification of SCREP sequences of interest and to aid in characterizing this emerging class of biomolecules. Analysis of sequences within the ScrepYard reveals that two‐domain tandem repeats constitute the most abundant SCREP domain architecture, while the interdomain “linker” regions connecting the functional domains are found to be abundant in amino acids with short or polar sidechains and contain an unusually high abundance of proline residues. Finally, we demonstrate the utility of ScrepYard as a virtual screening tool for discovery of putatively multivalent peptides, by using it as a resource to identify a previously uncharacterized serine protease inhibitor and confirm its predicted activity using an enzyme assay.  相似文献   
953.
Apurinic/apyrimidinic (AP or abasic) sites are among the most abundant DNA lesions. Numerous proteins within different organisms ranging from bacteria to human have been demonstrated to react with AP sites to form covalent Schiff base DNA–protein cross-links (DPCs). These DPCs are unstable due to their spontaneous hydrolysis, but the half-lives of these cross-links can be as long as several hours. Such long-lived DPCs are extremely toxic due to their large sizes, which physically block DNA replication. Therefore, these adducts must be promptly eradicated to maintain genome integrity. Herein, we used in vitro reconstitution experiments with chemically synthesized, stable, and site-specific Schiff base AP-peptide/protein cross-link analogs to demonstrate for the first time that this type of DPC can be repaired by Escherichia coli (E. coli) long-patch base excision repair. We demonstrated that the repair process requires a minimum of three enzymes and five consecutive steps, including: (1) 5′-DNA strand incision of the DPC by endonuclease IV; (2 to 4) strand-displacement DNA synthesis, removal of the 5′-deoxyribose phosphate-peptide/protein adduct-containing flap, and gap-filling DNA synthesis by DNA polymerase I; and (5) strand ligation by a ligase. We further demonstrated that endonuclease IV plays a major role in incising an AP-peptide cross-link within E. coli cell extracts. We also report that eradicating model AP-protein (11.2–36.1 kDa) DPCs is less efficient than that of an AP-peptide10mer cross-link, supporting the emerging model that proteolysis is likely required for efficient DPC repair.  相似文献   
954.
955.
956.
957.
958.
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号