首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   525298篇
  免费   66642篇
  国内免费   164篇
  592104篇
  2016年   5518篇
  2015年   7766篇
  2014年   9319篇
  2013年   13199篇
  2012年   14671篇
  2011年   14760篇
  2010年   9718篇
  2009年   9216篇
  2008年   13173篇
  2007年   13948篇
  2006年   12944篇
  2005年   12593篇
  2004年   12496篇
  2003年   12083篇
  2002年   11635篇
  2001年   22678篇
  2000年   23187篇
  1999年   18584篇
  1998年   6638篇
  1997年   7034篇
  1996年   6828篇
  1995年   6565篇
  1994年   6546篇
  1993年   6465篇
  1992年   16230篇
  1991年   16114篇
  1990年   15791篇
  1989年   15361篇
  1988年   14351篇
  1987年   13801篇
  1986年   12913篇
  1985年   13055篇
  1984年   10964篇
  1983年   9683篇
  1982年   7468篇
  1981年   7004篇
  1980年   6580篇
  1979年   10958篇
  1978年   8516篇
  1977年   7843篇
  1976年   7452篇
  1975年   8259篇
  1974年   8558篇
  1973年   8399篇
  1972年   7949篇
  1971年   6916篇
  1970年   6050篇
  1969年   5710篇
  1968年   5208篇
  1967年   4523篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Although boron (B) is a micronutrient essential for the growth of vascular plants, it reduces growth and seed yield when present in excessive amounts. A hydroponic assay of nineteen Brassica rapa genotypes resulted in the identification of two tolerant genotypes, WWY Sarson and Local at a range of boron concentrations (15–165 μM). The most tolerant and sensitive genotypes were assessed for shoot boron concentrations in a soil assay with 4, 29 and 54 mg B kg−1 soil. The soil assay confirmed the results of the hydroponic screening. Shoot boron uptake was at least three times lower and shoot boron concentrations about 10 times lower in the tolerant than sensitive genotypes, indicating that boron tolerance involved boron exclusion from the shoot.  相似文献   
982.
The white‐browed woodswallow Artamus superciliosus and masked woodswallow A. personatus (Passeriformes: Artamidae) are members of Australia's diverse arid‐ and semi‐arid zone avifauna. Widely sympatric and among Australia's relatively few obligate long‐distance temperate‐tropical migrants, the two are well differentiated morphologically but not ecologically and vocally. They are pair breeders unlike other Artamus species, which are at least facultative cooperative breeders. For these reasons they are an excellent case in which to use molecular data in integrative study of their evolution from ecological and biogeographical perspectives. We used mitochondrial DNA (mtDNA) to test whether they are each other's closest relatives, whether they evolved migration independently, whether they have molecular signatures of population expansions like some other Australian arid zone birds, and to estimate the timing of any inferred population expansions. Their mtDNAs are monophyletic with respect to other species of Artamus but polyphyletic with respect to each other. The two species appear not to have evolved migration independently of each other but their morphological and mtDNA evolution have been strongly decoupled. Some level of hybridization and introgression cannot be dismissed outright as being involved in their mtDNA polyphyly but incomplete sorting of their most recent common ancestor's mtDNA is a simpler explanation consistent with their ecology. Bayesian phylogenetic inference and analyses of diversity within the two species (n=77) with conventional diversity statistics, statistical parsimony, and tests for population expansion vs stability (Tajima's D, Fu's Fs and Ramos‐Onsin and Rozas's R2) all favour recent population increases. However, a non‐starlike network suggests expansion(s) relatively early in the Pleistocene. Repeated population bottlenecks corresponding with multiple peaks of Pleistocene aridity could explain our findings, which add a new dimension to accruing data on the effects of Pleistocene aridity on the Australian biota.  相似文献   
983.
The river domain: why are there more species halfway up the river?   总被引:2,自引:0,他引:2  
Biologists have long noted higher levels of species diversity in the longitudinal middle‐courses of river systems and have proposed many explanations. As a new explanation for this widespread pattern, we suggest that many middle‐course peaks in richness may be, at least in part, a consequence of geometric constraints on the location of species’ ranges along river courses, considering river headwaters and mouths as boundaries for the taxa considered. We demonstrate this extension of the mid‐domain effect (MDE) to river systems for riparian plants along two rivers in Sweden, where a previous study found a middle‐course peak in richness of natural (non‐ruderal) species. We compare patterns of empirical richness of these species to null model predictions of species richness along the two river systems and to spatial patterns for six environmental variables (channel width, substrate fineness, substrate heterogeneity, ice scour, bank height, and bank area). In addition, we examine the independent prediction of mid‐domain effects models that species with large ranges, because the location of their ranges is more constrained, are more likely to produce a mid‐domain peak in richness than are species with small ranges. Species richness patterns of riparian plants were best predicted by models including both null model predictions and environmental variables. When species were divided into large‐ranged and small‐ranged groups, the mid‐domain effect was more prominent and the null model predictions were a better fit to the empirical richness patterns of large‐ranged species than those of small‐ranged species. Our results suggest that the peak in riparian plant species richness in the middle courses of the rivers studied can be explained by an underlying mid‐domain effect (driven by geometric constraints on large‐ranged species), together with environmental effects on richness patterns (particularly on small‐ranged species). We suggest that the mid‐domain effect may help to explain similar middle‐course richness peaks along other rivers.  相似文献   
984.
Potassium channels are one of the fundamental requirements for the generation of action potentials in the nervous system, and their characteristics shape the output of neurons in response to synaptic input. We review here the distribution and function of a high-threshold potassium channel (Kv3.3) in the electrosensory lateral line lobe of the weakly electric fish Apteronotus leptorhynchus, with particular focus on the pyramidal cells in this brain structure. These cells contain both high-threshold Kv3.3 channels, as well as low-threshold potassium channels of unknown molecular identity. Kv3.3 potassium channels regulate burst discharge in pyramidal cells and enable sustained high frequency firing through their ability to reduce an accumulation of low-threshold potassium current.W. H. Mehaffey and F. R. Fernandez contributed equally to this work.  相似文献   
985.
Pair formation in the bushcricket Gampsocleis gratiosa is achieved through acoustic signalling by the male and phonotactic approaches of the female towards the calling song. On a walking belt in the free sound field, females tracked the position of the speaker broadcasting the male calling song with a remarkable precision, deviating by no more than 10 cm in either direction from the ideal course. Starting with stimulus angles of 6–10° the females significantly turned to the correct side, and with stimulus angles greater than 25° no incorrect turns were made. Using neurophysiological data on the directionality of the ear we calculated that with such stimulus angles the available binaural intensity difference is in the order of 1–2 dB. We developed a dichotic ear stimulation device for freely moving females with a cross-talk barrier of about 50 dB, which allowed to precisely apply small binaural intensity differences. In such a dichotic stimulation paradigm, females on average turned to the tronger stimulated side starting with a 1 dB difference between both ears. The significance of such a reliable lateralization behaviour with small interaural intensity differences for phonotactic behaviour under natural conditions is discussed.  相似文献   
986.
We evaluated the response of the Antarctic soil nematodes Scottnema lindsayae and Plectus antarcticus to various salts (NaCl, MgSO4, KNO3 and NaCl + MgSO4) and salt concentrations in prepared salt solutions ranging from 0.1 to 3 M, and in saturation paste extracts of soils collected from multiple locations where nematode abundance varied from zero to numerous, and where electrical conductivity ranged from 108 to >12,000 μS/cm. Nematode salt tolerance was salt specific; both nematode species survived in low-experimental concentrations of NaCl and MgSO4, and neither species survived in KNO3 solutions of any concentration. There was no survival of nematodes in the saturation paste extracts of highly saline soils (4,100 μS/cm), while survival was over 80–97% in less saline soils (1,945 μS/cm). A 1:1 dilution of these highly saline saturation paste extracts increased S. lindsayae survival to 80%, while survival of P. antarcticus was not observed until dilutions of greater than 200%. The results complement previous studies demonstrating niche partitioning of S. lindsayae and P. antarcticus across salinity gradients and strengthen interpretations of the physiological mechanisms underlying previously reported spatial correlation between soil salinity and nematodes abundance in the Antarctic Dry Valleys.  相似文献   
987.
Carbon (C) sequestration, defined as the process whereby atmospheric CO2 is transferred into a long-lived C pool, is an important issue not only in the scientific community but also in the society at large because of its potential role in off-setting fossil fuel emissions. Through photosynthesis this C is stored in plants and through decomposition, trunks, branches, leaves and roots are incorporated in the soil via the action of different soil organisms, i.e., bacteria, fungi and invertebrates. This, together with the C exudates from roots that are utilized by microbial populations, constitutes the natural pathways of incorporating biomass-C into the soil. The amount of C stored in terrestrial ecosystems is the third largest among the global C pools. Soil organic carbon (SOC) up to 3 m is 2,344 Pg C (1 Petagram = 1015 g), and the SOC pool in tropical soils is approximately 30% of the global pool. Abiotic factors, which moderate C sequestration in soils are clay content, mineralogy, structural stability, landscape position, and soil moisture and temperature regimes. On the other hand, biotic factors involved in soil C sequestration are determined by the activities of soil organisms. However, models do not include the formation, stabilization and lifespan of the aggregates that have been biologically produced, including roots. This is not only due to the lack of studies on this subject, but also to overlooking the role of soil organisms in soil aggregation. Furthermore, there is a lack of comprehensive knowledge regarding the processes that control dissolved organic carbon (DOC) fluxes in soils and its role in the global budget of C sequestration. The boundaries of ecosystems are not considered in the studies of the subject, as it may be the case for terrestrial C sequestration, since the borders around the sites under study constitute pathways for the flow of C between sites and through the landscape. The concentrations of DOC in deep soil horizons and the contribution to DOC fluxes (exports) are relatively small, from 4 to 37 g DOC m?2 yr?1 retained in the mineral subsoil. In South America, although substantial research has been done under different ecosystems and land use systems in some countries, like Brazil, Colombia, Argentina, there is a need to conduct more studies with agreed standard methodologies in natural ecosystems and agricultural systems, and in other areas of Central America few studies have been undertaken to date. The principal objective of this review was to address the main mechanisms that determine SOC and SIC sequestration in soils of Latin America, and include: physical aggregate protection, SOC-clay interaction, DOC transport, bioturbation by soil organisms, and the formation of secondary carbonates. All of these mechanisms are generally explained by physical and chemical processes. In contrast, this review takes a soil ecological approach to describe the mechanisms listed above.  相似文献   
988.
989.
We collated an environmental history for a 8580 km2 study area in the Simpson Desert, Australia. Quantitative and qualitative data on climate, land-use, fire history and ecosystem dynamics were used to construct a chronology of processes threatening terrestrial mammal species. Over the last 150 years there has been the transition in land tenure from a hunter–gatherer economy to pastoralism, the loss of 11 mammal species, the cessation of small scale burning by Aboriginal people and the introduction of the fox and cat. Annual rainfall was highly variable and was influenced by the phase of the El Niño Southern Oscillation (ENSO). Irruptions of rodents, marked increases in the populations of native and introduced predators and extensive wildfires were associated with the La Niña phase of ENSO and occurred when rain-year (July–June) rainfall approached or exceeded the 90th percentile of the historical rainfall distribution. Large rainfall events in arid Australia have been viewed traditionally as the ‘boom’ times that benefit wildlife and pastoral production. However, because of hyper-predation and the risk of wildfire, we show that the years including and immediately following flooding rains should be identified as critical, or ‘bust’ periods for wildlife and conservation management. ENSO related climatic forecasts appear to be useful cues which can be incorporated into fire and predator management strategies in arid Australia. Studies such as this, which utilise a broad range of data types across extensive areas, can identify the timing and potential of threatening process not possible using contemporary studies alone.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号