首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   20篇
  国内免费   1篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   9篇
  2019年   6篇
  2018年   4篇
  2017年   7篇
  2016年   7篇
  2015年   12篇
  2014年   4篇
  2013年   9篇
  2012年   19篇
  2011年   9篇
  2010年   7篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   10篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2001年   6篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1990年   3篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有187条查询结果,搜索用时 78 毫秒
21.
Elevated CO2 enhances photosynthesis and growth of plants, but the enhancement is strongly influenced by the availability of nitrogen. In this article, we summarise our studies on plant responses to elevated CO2. The photosynthetic capacity of leaves depends not only on leaf nitrogen content but also on nitrogen partitioning within a leaf. In Polygonum cuspidatum, nitrogen partitioning among the photosynthetic components was not influenced by elevated CO2 but changed between seasons. Since the alteration in nitrogen partitioning resulted in different CO2-dependence of photosynthetic rates, enhancement of photosynthesis by elevated CO2 was greater in autumn than in summer. Leaf mass per unit area (LMA) increases in plants grown at elevated CO2. This increase was considered to have resulted from the accumulation of carbohydrates not used for plant growth. With a sensitive analysis of a growth model, however, we suggested that the increase in LMA is advantageous for growth at elevated CO2 by compensating for the reduction in leaf nitrogen concentration per unit mass. Enhancement of reproductive yield by elevated CO2 is often smaller than that expected from vegetative growth. In Xanthium canadense, elevated CO2 did not increase seed production, though the vegetative growth increased by 53%. As nitrogen concentration of seeds remained constant at different CO2 levels, we suggest that the availability of nitrogen limited seed production at elevated CO2 levels. We found that leaf area development of plant canopy was strongly constrained by the availability of nitrogen rather than by CO2. In a rice field cultivated at free-air CO2 enrichment, the leaf area index (LAI) increased with an increase in nitrogen availability but did not change with CO2 elevation. We determined optimal LAI to maximise canopy photosynthesis and demonstrated that enhancement of canopy photosynthesis by elevated CO2 was larger at high than at low nitrogen availability. We also studied competitive asymmetry among individuals in an even-aged, monospecific stand at elevated CO2. Light acquisition (acquired light per unit aboveground mass) and utilisation (photosynthesis per unit acquired light) were calculated for each individual in the stand. Elevated CO2 enhanced photosynthesis and growth of tall dominants, which reduced the light availability for shorter subordinates and consequently increased size inequality in the stand.  相似文献   
22.
23.
We have previously shown that mice lacking the protein kinase B-RAF have defects in both neural and endothelial cell lineages and die around embryonic day 12 (E12). To delineate the function of B-RAF in the brain, B-RAF KIN/KIN mice lacking B-RAF and expressing A-RAF under the control of the B-RAF locus were created. B-RAF KIN/KIN embryos displayed no vascular defects, no endothelial and neuronal apoptosis, or gross developmental abnormalities, and a significant proportion of these animals survived for up to 8 weeks. Cell proliferation in the neocortex was reduced from E14.5 onwards. Newborn cortical neurons were impaired in their migration toward the cortical plate, causing a depletion of Brn-2-expressing pyramidal neurons in layers II, III, and V of the postnatal cortex. Our data reveal that B-RAF is an important mediator of neuronal survival, migration, and dendrite formation and that A-RAF cannot fully compensate for these functions.  相似文献   
24.
Many experimental approaches in biology and biophysics, as well as applications in diagnosis and drug discovery, require proteins to be immobilized on solid supports. Protein microarrays, for example, provide a high-throughput format to study biomolecular interactions. The technique employed for protein immobilization is a key to the success of these applications. Recent biochemical developments are allowing, for the first time, the selective and traceless immobilization of proteins generated by cell-free systems without the need for purification and/or reconcentration prior to the immobilization step.  相似文献   
25.
We investigated the relationship between leaf shape and leaf hydraulic resistance in a set of broadleaf Quercus tree species (Q. cerris, Q. frainetto, Q. petraea, Q. pyrenaica, Q. robur, Q. rubra, Q. velutina). Seedlings of all the studied species were grown under uniform environmental conditions. A new high-pressure flowmeter was designed to measure leaf-blade hydraulic resistance. Leaf shape was characterised by the complexity of leaf outline which was regarded as an estimate of leaf lobation. This was done using the box-counting fractal dimension of the leaf silhouette. Leaf hydraulic resistance was negatively related to leaf lobation. It is suggested that the lower hydraulic resistance in deeply lobed leaves may constitute a mechanism for improving water balance under dry atmospheric conditions.  相似文献   
26.
27.
Summary This paper describes a practical new use of 3-mercaptopropionic acid as a highly versatile multidetachable linker for solid-phase synthesis. Our approach is based on the stability of the alkylthioester functionality to optimized Boc-SPPS protocols and HF treatment, as well as on the mild activation of the thioester functionality toward nucleophilic or reductive displacement. This allows several C-terminal modifications to be introduced into a synthetic molecule during the cleavage step. We have shown that unprotected peptides can be efficiently cleaved from a propyl thioester-polyethylene glycol-poly-(N,N-dimethylacrylamide) copolymer resin using a great variety of nucleophiles to give the corresponding C-terminally modified peptides (esters, thioesters, carboxylic acids, thioacids, amides, hydroxamic acids, hydrazides, alcohols). The nucleophilic cleavage reaction is both rapid and exceptionally clean in all the cases tested. Abbreviations: HBTU,N-[(1H-benzotriazol-1-yl)(dimethylamino)methylene]-N-methylmethanaminium hexafluorophosphateN-oxide); DIEA,N,N-diisopropylethylamine; DMF,N,N-dimethyl formamide; ES-MS, electrospray mass spectrometry; FAB-MS, fast atom bombardment mass spectrometry; HMBA, hydroxymethylbenzoic acid; HPLC, high performance liquid chromatography; PBS: phosphate buffer saline; PEGA, polyethylene glycolpoly-(N,N-dimethylacrylamide); TFA, trifluoroacetic acid; SPPS, solid-phase peptide synthesis. Standard IUPAC single and triple letter codes for amino acids are used throughout  相似文献   
28.
波长514nm的激光照射可用于研究激光导致有丝分裂染色体畸变的效应。本文提供了一种新的辐照系统,能用于研究突变的感应现象,并与从γ-线辐射源获得的结果进行了比较。 Abstract:Laser irradiation at wavelength 514 nm was used to study the effect of lasers in inducing chromosomal aberrations at mitosis.This study offers a new radiation system which could be used for the induction of mutations.Results are compared with those obtained from studies using γ-rays as irradiation source.  相似文献   
29.
Alpine treeline ecotones are considered early-warning monitors of the effects of climate change on terrestrial ecosystems, but it is still unclear how accurately treeline dynamics may track the expected temperature rises. Site-specific abiotic constraints, such as topography and demographic trends may make treelines less responsive to environmental fluctuations. A better understanding on how local processes modulate treelines’ response to warming is thus required. We developed a model of treeline dynamics based on individual data of growth, mortality and reproduction. Specifically, we modeled growth patterns, mortality rates and reproductive size thresholds as a function of temperature and stand structure to evaluate the influence of climate- and stand-related processes on treeline dynamics. In this study, we analyze the dynamics of four Pyrenean mountain pine treeline sites with contrasting stand structures, and subjected to differing rates of climate warming. Our models indicate that Pyrenean treelines could reach basal areas and reproductive potentials similar to those currently observed in high-elevation subalpine forest by the mid twenty-first century. The fastest paces of treeline densification are forecasted by the late twenty-first century and are associated with higher warming rates. We found a common densification response of Pyrenean treelines to climate warming, but contrasting paces arise due to current size structures. Treelines characterized by a multistratified stand structure and subjected to lower mean annual temperatures were the most responsive to climate warming. In monostratified stands, tree growth was less sensitive to temperature than in multistratified stands and trees reached their reproductive size threshold later. Therefore, our simulations highlight that stand structure is paramount in modulating treeline responsiveness to ongoing climate warming. Synthesis. Treeline densification over the twenty-first century is likely to occur at different rates contingent on current stand structure and its effects on individual-level tree growth responses to warming. Accurate projections of future treeline dynamics must thus incorporate site-specific factors other than climate, specifically those related to stand structure and its influence on tree growth.  相似文献   
30.
Forest dynamics will depend upon the physiological performance of individual tree species under more stressful conditions caused by climate change. In order to compare the idiosyncratic responses of Mediterranean tree species (Quercus faginea, Pinus nigra, Juniperus thurifera) coexisting in forests of central Spain, we evaluated the temporal changes in secondary growth (basal area increment; BAI) and intrinsic water-use efficiency (iWUE) during the last four decades, determined how coexisting species are responding to increases in atmospheric CO2 concentrations (C a) and drought stress, and assessed the relationship among iWUE and growth during climatically contrasting years. All species increased their iWUE (ca. +15 to +21 %) between the 1970s and the 2000s. This increase was positively related to C a for J. thurifera and to higher C a and drought for Q. faginea and P. nigra. During climatically favourable years the study species either increased or maintained their growth at rising iWUE, suggesting a higher CO2 uptake. However, during unfavourable climatic years Q. faginea and especially P. nigra showed sharp declines in growth at enhanced iWUE, likely caused by a reduced stomatal conductance to save water under stressful dry conditions. In contrast, J. thurifera showed enhanced growth also during unfavourable years at increased iWUE, denoting a beneficial effect of C a even under climatically harsh conditions. Our results reveal significant inter-specific differences in growth driven by alternative physiological responses to increasing drought stress. Thus, forest composition in the Mediterranean region might be altered due to contrasting capacities of coexisting tree species to withstand increasingly stressful conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号