首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   21篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   18篇
  2014年   15篇
  2013年   25篇
  2012年   25篇
  2011年   12篇
  2010年   11篇
  2009年   8篇
  2008年   10篇
  2007年   10篇
  2006年   14篇
  2005年   9篇
  2004年   9篇
  2003年   8篇
  2002年   5篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1971年   1篇
  1965年   1篇
  1938年   1篇
排序方式: 共有274条查询结果,搜索用时 406 毫秒
131.
Aquaculture produces a significant amount of wastes, consisting of metabolic by-products, leading to general deterioration of water quality. An alternative for reducing nutrient excess is the use of biofilters that can effectively remove nutrients from the water. A laboratory study was conducted to test the efficacy of the macroalgae Gracilaria caudata and the microcrustacean Artemia franciscana to remove nutrients from aquaculture effluents. The experiment consisted of three treatments: macroalgae (1) macroalgae and Artemia (2), and only Artemia (3). The results indicated that the treatment 2 was the most efficient in removing the nitrogenated forms. The maximum reduction values were: NH4 = 29.8%; NO2 = 100%; NO3 = 72.4% and DIN = 44.5%. In contrast, the nutrients concentration was significantly higher at the end of the experiment in the treatment 3 than in the other treatments (ANOVA: p < 0,001). PO4 showed a significant increase during the experiment, especially in treatments 2 and 3 (ANOVA: p < 0.001). The results showed that G. caudata and A. franciscana performed well in absorbing nitrogenated forms. This indicates that the use of these organisms as biofilters has the potential for being an ecologically correct practice and may contribute to improving the water quality of coastal regions.  相似文献   
132.
Retinal detachment (RD) describes a separation of the neurosensory retina from the retinal pigmented epithelium (RPE). The RPE is essential for normal function of the light sensitive neurons, the photoreceptors. Detachment of the retina from the RPE creates a physical gap that is filled with extracellular fluid. RD initiates cellular and molecular adverse events that affect both the neurosensory retina and the RPE since the physiological exchange of ions and metabolites is severely perturbed. The consequence for vision is related to the duration of the detachment since a rapid reapposition of the two tissues results in the restoration of vision 1. The treatment of RD is exclusively surgical. Removal of vitreous gel (vitrectomy) is followed by the removal non essential part of the retina around the detached area to favor retinal detachment. The removed retinal specimens are res nullius (nothing) and consequently normally discarded. To recover RNA from these surgical specimens, we developed the procedure jouRNAl that allows RNA conservation during the transfer from the surgical block to the laboratory. We also standardized a protocol to purify RNA by cesium chloride ultracentrifugation to assure that the purified RNAs are suitable for global gene expression analysis. The quality of the RNA was validated both by RT-PCR and microarray analysis. Analysis of the data shows a simultaneous involvement of inflammation and photoreceptor degeneration during RD.  相似文献   
133.
Tubule-interstitial nephritis (TIN) results in decreased renal function and interstitial inflammation, which ultimately leads to fibrosis. Excessive adenine intake can cause TIN because xanthine dehydrogenase (XDH) can convert this purine into an insoluble compound, which precipitates in the tubuli. Innate immune sensors, such as Toll-like receptors (TLR) and inflammasome complex, play a crucial role in the initiation of inflammation. The aim of this study was to evaluate the roles of TLR-2 and -4, Myd88 and inflammasome complex in an experimental model of TIN. Here, we show that wild-type (WT) mice fed adenine-enriched food exhibited significant renal dysfunction and enhanced cellular infiltration accompanied by collagen deposition. They also presented higher gene and protein expression of pro-inflammatory cytokines. In contrast, TLR-2, -4, MyD88, ASC and Caspase-1 KO mice showed renoprotection associated with expression of inflammatory molecules at levels comparable to controls. Furthermore, treatment of WT animals with allopurinol, an XDH inhibitor, led to reduced levels of uric acid, oxidative stress, collagen deposition and a downregulation of the NF-kB signaling pathway. We concluded that MyD88 signaling and inflammasome participate in the development of TIN. Furthermore, inhibition of XDH seems to be a promising way to therapeutically target the developing inflammatory process.  相似文献   
134.
135.
136.
VEGF inhibition can promote renal vascular and parenchymal injury, causing proteinuria, hypertension and thrombotic microangiopathy. The mechanisms underlying these side effects are unclear. We investigated the renal effects of the administration, during 45 days, of sunitinib (Su), a VEGF receptor inhibitor, to rats with 5/6 renal ablation (Nx). Adult male Munich-Wistar rats were distributed among groups S+V, sham-operated rats receiving vehicle only; S+Su, S rats given Su, 4 mg/kg/day; Nx+V, Nx rats receiving V; and Nx+Su, Nx rats receiving Su. Su caused no change in Group S. Seven and 45 days after renal ablation, renal cortical interstitium was expanded, in association with rarefaction of peritubular capillaries. Su did not worsen hypertension, proteinuria or interstitial expansion, nor did it affect capillary rarefaction, suggesting little angiogenic activity in this model. Nx animals exhibited glomerulosclerosis (GS), which was aggravated by Su. This effect could not be explained by podocyte damage, nor could it be ascribed to tuft hypertrophy or hyperplasia. GS may have derived from organization of capillary microthrombi, frequently observed in Group Nx+Su. Treatment with Su did not reduce the fractional glomerular endothelial area, suggesting functional rather than structural cell injury. Chronic VEGF inhibition has little effect on normal rats, but can affect glomerular endothelium when renal damage is already present.  相似文献   
137.
Biotin serves as a covalently bound coenzyme in five human carboxylases; biotin is also attached to histones H2A, H3, and H4, although the abundance of biotinylated histones is low. Biotinylation of both carboxylases and histones is catalyzed by holocarboxylase synthetase. Human biotin requirements are unknown. Recommendations for adequate intake of biotin are based on the typical intake of biotin in an apparently healthy population, which is only a crude estimate of the true intake due to analytical problems. Importantly, intake recommendations do not take into account possible effects of biotin deficiency on impairing genome stability. Recent studies suggest that biotin deficiency causes de-repression of long terminal repeats, thereby causing genome instability. While it was originally proposed that these effects are caused by loss of biotinylated histones, more recent evidence suggests a more immediate role of holocarboxylase synthetase in forming multiprotein complexes in chromatin that are important for gene repression. Holocarboxylase synthetase appears to interact physically with the methyl-CpG-binding domain protein 2 and, perhaps, histone methyl transferases, thereby creating epigenetic synergies between biotinylation and methylation events. These observations might offer a mechanistic explanation for some of the birth defects seen in biotin-deficient animal models.  相似文献   
138.
The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks, a mechanism to which NF-κB activation is central. Downregulation of endothelial nitric oxide synthase (eNOS) contributes to sepsis-induced endothelial dysfunction. Erythropoietin (EPO) has emerged as a major tissue-protective cytokine in the setting of stress. We investigated the role of EPO in sepsis-related acute kidney injury using a cecal ligation and puncture (CLP) model. Wistar rats were divided into three primary groups: control (sham-operated); CLP; and CLP+EPO. EPO (4,000 IU/kg body wt ip) was administered 24 and 1 h before CLP. Another group of rats received N-nitro-l-arginine methyl ester (l-NAME) simultaneously with EPO administration (CLP+EPO+l-NAME). A fifth group (CLP+EPOtreat) received EPO at 1 and 4 h after CLP. At 48 h postprocedure, CLP+EPO rats presented significantly higher inulin clearance than did CLP and CLP+EPO+l-NAME rats; hematocrit levels, mean arterial pressure, and metabolic balance remained unchanged in the CLP+EPO rats; and inulin clearance was significantly higher in CLP+EPOtreat rats than in CLP rats. At 48 h after CLP, creatinine clearance was significantly higher in the CLP+EPO rats than in the CLP rats. In renal tissue, pre-CLP EPO administration prevented the sepsis-induced increase in macrophage infiltration, as well as preserving eNOS expression, EPO receptor (EpoR) expression, IKK-α activation, NF-κB activation, and inflammatory cytokine levels, thereby increasing survival. We conclude that this protection, which appears to be dependent on EpoR activation and on eNOS expression, is attributable, in part, to inhibition of the inflammatory response via NF-κB downregulation.  相似文献   
139.
Oxidative damage and impaired cytosolic Ca(2+) concentration ([Ca(2+)](cyto)) handling are associated with mitochondrial [Ca(2+)] ([Ca(2+)](mito)) overload and depressed functional recovery after cardiac ischemia-reperfusion (I/R) injury. We hypothesized that hearts from old guinea pigs would demonstrate impaired [Ca(2+)](mito) handling, poor functional recovery, and a more oxidized state after I/R injury compared with hearts from young guinea pigs. Hearts from young (~4 wk) and old (>52 wk) guinea pigs were isolated and perfused with Krebs-Ringer solution (2.1 mM Ca(2+) concentration at 37°C). Left ventricular pressure (LVP, mmHg) was measured with a balloon, and NADH, [Ca(2+)](mito) (nM), and [Ca(2+)](cyto) (nM) were measured by fluorescence with a fiber optic probe placed against the left ventricular free wall. After baseline (BL) measurements, hearts were subjected to 30 min global ischemia and 120 min reperfusion (REP). In old vs. young hearts we found: 1) percent infarct size was lower (27 ± 9 vs. 57 ± 2); 2) developed LVP (systolic-diastolic) was higher at 10 min (57 ± 11 vs. 29 ± 2) and 60 min (55 ± 10 vs. 32 ± 2) REP; 3) diastolic LVP was lower at 10 and 60 min REP (6 ± 3 vs. 29 ± 4 and 3 ± 3 vs. 21 ± 4 mmHg); 4) mean [Ca(2+)](cyto) was higher during ischemia (837 ± 39 vs. 541 ± 39), but [Ca(2+)](mito) was lower (545 ± 62 vs. 975 ± 38); 5) [Ca(2+)](mito) was lower at 10 and 60 min REP (129 ± 2 vs. 293 ± 23 and 122 ± 2 vs. 234 ± 15); 6) reduced inotropic responses to dopamine and digoxin; and 7) NADH was elevated during ischemia in both groups and lower than BL during REP. Contrary to our stated hypotheses, old hearts showed reduced [Ca(2+)](mito), decreased infarction, and improved basal mechanical function after I/R injury compared with young hearts; no differences were noted in redox state due to age. In this model, aging-associated protection may be linked to limited [Ca(2+)](mito) loading after I/R injury despite higher [Ca(2+)](cyto) load during ischemia in old vs. young hearts.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号