首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3054篇
  免费   152篇
  国内免费   1篇
  3207篇
  2024年   4篇
  2023年   18篇
  2022年   50篇
  2021年   67篇
  2020年   45篇
  2019年   58篇
  2018年   71篇
  2017年   70篇
  2016年   125篇
  2015年   170篇
  2014年   221篇
  2013年   217篇
  2012年   262篇
  2011年   241篇
  2010年   167篇
  2009年   138篇
  2008年   187篇
  2007年   170篇
  2006年   127篇
  2005年   120篇
  2004年   125篇
  2003年   90篇
  2002年   83篇
  2001年   74篇
  2000年   68篇
  1999年   43篇
  1998年   16篇
  1997年   14篇
  1996年   14篇
  1995年   7篇
  1994年   4篇
  1993年   5篇
  1992年   15篇
  1991年   12篇
  1990年   11篇
  1989年   14篇
  1988年   9篇
  1987年   6篇
  1986年   6篇
  1985年   9篇
  1984年   5篇
  1983年   4篇
  1982年   6篇
  1979年   9篇
  1978年   4篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
  1972年   3篇
  1968年   2篇
排序方式: 共有3207条查询结果,搜索用时 15 毫秒
31.
32.
We hypothesized that host antiviral genes induced by type I interferons might affect the natural course of severe acute respiratory syndrome (SARS). We analyzed single nucleotide polymorphisms (SNPs) of 2',5'-oligoadenylate synthetase 1 (OAS-1), myxovirus resistance-A (MxA), and double-stranded RNA-dependent protein kinase in 44 Vietnamese SARS patients with 103 controls. The G-allele of non-synonymous A/G SNP in exon 3 of OAS-1 gene showed association with SARS (p=0.0090). The G-allele in exon 3 of OAS-1 and the one in exon 6 were in strong linkage disequilibrium and both of them were associated with SARS infection. The GG genotype and G-allele of G/T SNP at position -88 in the MxA gene promoter were found more frequently in hypoxemic group than in non-hypoxemic group of SARS (p=0.0195). Our findings suggest that polymorphisms of two IFN-inducible genes OAS-1 and MxA might affect susceptibility to the disease and progression of SARS at each level.  相似文献   
33.
A protein sensor with a highly responsive fluorescence resonance energy transfer (FRET) signal for sensing sugars in living Saccharomyces cerevisiae cells was developed by combinatorial engineering of the domain linker and the binding protein moiety. Although FRET sensors based on microbial binding proteins have previously been created for visualizing various sugars in vivo, such sensors are limited due to a weak signal intensity and a narrow dynamic range. In the present study, the length and composition of the linker moiety of a FRET-based sensor consisting of CFP-linker(1)-maltose-binding protein-linker(2)-YFP were redesigned, which resulted in a 10-fold-higher signal intensity. Molecular modeling of the composite linker moieties, including the connecting peptide and terminal regions of the flanking proteins, suggested that an ordered helical structure was preferable for tighter coupling of the conformational change of the binding proteins to the FRET response. When the binding site residue Trp62 of the maltose-binding protein was diversified by saturation mutagenesis, the Leu mutant exhibited an increased binding constant (82 microM) accompanied by further improvement in the signal intensity. Finally, the maltose sensor with optimized linkers was redesigned to create a sugar sensor with a new specificity and a wide dynamic range. When the optimized maltose sensors were employed as in vivo sensors, highly responsive FRET images were generated from real-time analysis of maltose uptake of Saccharomyces cerevisiae (baker's yeast).  相似文献   
34.
Glutelin is a major seed storage protein, accounting for 60?C80?% of the total endosperm protein content in rice. To test whether we could augment the expression of an introduced recombinant protein in rice by suppressing the glutelin gene, we generated transgenic glutelin RNAi (glu RNAi) rice seeds. RNA gel blot analyses confirmed that the endogenous glutelin gene was severely suppressed in these transgenic rice lines. RT-PCR analysis further revealed that all the members of glutelin multigene family were downregulated. Transgenic glu RNAi rice seeds expressing a recombinant red fluorescent protein (RFP) showed stronger fluorescence than seeds transformed with the RFP gene only. Western blot analysis further revealed that the relative accumulation of RFP in glu RNAi seeds was twofold higher than that in the RFP-only transgenic seeds. These results suggest that RNAi targeting of an endogenous storage protein could be of great utility in obtaining higher transgene expression in genetically engineered rice and other plant lines.  相似文献   
35.
36.
Prions, the agents responsible for transmissible spongiform encephalopathies, are infectious proteins consisting primarily of scrapie prion protein (PrP(Sc)), a misfolded, β-sheet enriched and aggregated form of the host-encoded cellular prion protein (PrP(C)). Their propagation is based on an autocatalytic PrP conversion process. Despite the lack of a nucleic acid genome, different prion strains have been isolated from animal diseases. Increasing evidence supports the view that strain-specific properties may be enciphered within conformational variations of PrP(Sc). In humans, sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent form of prion diseases and has demonstrated a wide phenotypic and molecular spectrum. In contrast, variant Creutzfeldt-Jakob disease (vCJD), which results from oral exposure to the agent of bovine spongiform encephalopathy, is a highly stereotyped disease, that, until now, has only occurred in patients who are methionine homozygous at codon 129 of the PrP gene. Recent research has provided consistent evidence of strain diversity in sCJD and also, unexpectedly enough, in vCJD. Here, we discuss the puzzling biochemical/pathological diversity of human prion disorders and the relationship of that diversity to the biological properties of the agent as demonstrated by strain typing in experimental models.  相似文献   
37.
Tetraspanin CD151 associates with laminin-binding α(3)β(1)/α(6)β(1) integrins in epithelial cells and regulates adhesion-dependent signaling events. We found here that CD151 plays a role in recruiting Ras, Rac1, and Cdc42, but not Rho, to the cell membrane region, leading to the formation of α(3)β(1)/α(6)β(1) integrin-CD151-GTPases complexes. Furthermore, cell adhesion to laminin enhanced CD151 association with β(1) integrin and, thereby, increased complex formation between the β(1) family of integrins and small GTPases, Ras, Rac1, and Cdc42. Adhesion receptor complex-associated small GTPases were activated by CD151-β(1) integrin complex-stimulating adhesion events, such as α(3)β(1)/α(6)β(1) integrin-activating cell-to-laminin adhesion and homophilic CD151 interaction-generating cell-to-cell adhesion. Additionally, FAK and Src appeared to participate in this adhesion-dependent activation of small GTPases. However, engagement of laminin-binding integrins in CD151-deficient cells or CD151-specific siRNA-transfected cells did not activate these GTPases to the level of cells expressing CD151. Small GTPases activated by engagement of CD151-β(1) integrin complexes contributed to CD151-induced cell motility and MMP-9 expression in human melanoma cells. Importantly, among the four tetraspanin proteins that associate with β(1) integrin, only CD151 exhibited the ability to facilitate complex formation between the β(1) family of integrins and small GTPases and stimulate β(1) integrin-dependent activation of small GTPases. These results suggest that CD151 links α(3)β(1)/α(6)β(1) integrins to Ras, Rac1, and Cdc42 by promoting the formation of multimolecular complexes in the membrane, which leads to the up-regulation of adhesion-dependent small GTPase activation.  相似文献   
38.
The use of Bacillus amyloliquefaciens for enzyme production and its exceptional high protein export capacity initiated this study where the presence and function of multiple type I signal peptidase isoforms was investigated. In addition to type I signal peptidases SipS(ba) [Meijer, W.J.J., de Jong, A., Bea, G., Wisman, A., Tjalsma, H., Venema, G., Bron, S. & van Dijl, J.M. (1995) Mol. Microbiol. 17, 621-631] and SipT(ba) [Hoang, V. & Hofemeister, J. (1995) Biochim. Biophys. Acta 1269, 64-68] which were previously identified, here we present evidence for two other Sip-like genes in B. amyloliquefaciens. Same map positions as well as sequence motifs verified that these genes encode homologues of Bacillus subtilis SipV and SipW. SipU-encoding DNA was not found in B. amyloliquefaciens. SipW-encoding DNA was also found for other Bacillus strains representing different phylogenetic groups, but not for Bacillus stearothermophilus and Thermoactinomyces vulgaris. The absence of these genes, however, could have been overlooked due to sequence diversity. Sequence alignments of 23 known Sip-like proteins from Bacillus origin indicated further branching of the P-group signal peptidases into clusters represented by B. subtilis SipV, SipS-SipT-SipU and B. anthracis Sip3-Sip5 proteins, respectively. Each B. amyloliquefaciens sip(ba) gene was expressed in an Escherichia coli LepBts mutant and tested for genetic complementation of the temperature sensitive (TS) phenotype as well as pre-OmpA processing. Although SipS(ba) as well as SipT(ba) efficiently restored processing of pre-OmpA in E. coli, only SipS(ba) supported growth at TS conditions, indicating functional diversity. Changed properties of the sip(ba) gene disruption mutants, including cell autolysis, motility, sporulation, and nuclease activities, seemed to correlate with specificities and/or localization of B. amyloliquefaciens SipS, SipT and SipV isoforms.  相似文献   
39.
40.
Transdermal drug delivery system (TDDS) may provide a more reliable method of drug delivery than oral delivery by avoiding gut absorption and first-pass metabolism, but needs a method for efficiently crossing the epidermal barrier. To enhance the delivery through the skin, we have developed a biocompatible, dissolvable microneedle array made from carboxymethyl cellulose (CMC). Using laser ablation for creating the mold greatly improved the efficiency and reduced the cost of microneedle fabrication. Mixing CMC with amylopectin (AP) enhanced the mechanical and tunable dissolution properties of the microneedle for controlled release of model compounds. Using the CMC microneedle array, we observed significant enhancement in the skin permeability of a fluorescent model compound, and also increase in the anti-oxidant activity of ascorbic acid after crossing the skin. Our dissolvable microneedle array provides a new and biocompatible method for delivery of drugs and cosmetic compounds through the skin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号