首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   56篇
  2022年   5篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   11篇
  2016年   12篇
  2015年   11篇
  2014年   21篇
  2013年   19篇
  2012年   24篇
  2011年   20篇
  2010年   12篇
  2009年   11篇
  2008年   19篇
  2007年   32篇
  2006年   20篇
  2005年   19篇
  2004年   27篇
  2003年   26篇
  2002年   17篇
  2001年   5篇
  2000年   13篇
  1999年   8篇
  1998年   9篇
  1997年   1篇
  1996年   1篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   6篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1916年   1篇
排序方式: 共有423条查询结果,搜索用时 695 毫秒
61.
Padlock oligonucleotides as a tool for labeling superhelical DNA   总被引:2,自引:1,他引:1       下载免费PDF全文
Labeling of a covalently closed circular double-stranded DNA was achieved using a so-called ‘padlock oligonucleotide’. The oligonucleotide was targeted to a sequence which is present in the replication origin of phage f1 and thus in numerous commonly used plasmids. After winding around the double-stranded target DNA sequence by ligand-induced triple helix formation, a biotinylated oligonucleotide was circularized using T4 DNA ligase and in this way became catenated to the plasmid. A gel shift assay was developed to measure the extent of plasmid modification by the padlock oligonucleotide. A similar assay showed that a modified supercoiled plasmid was capable of binding one streptavidin molecule thanks to the biotinylated oligonucleotide and that this binding was quantitative. The catenated complex was visualized by electron and atomic force microscopies using streptavidin conjugates or single strand-binding proteins as protein tags for the padlock oligonucleotide. This method provides a versatile tool for plasmid functionalization which offers new perspectives in the physical study of supercoiled DNA and in the development of improved vectors for gene therapy.  相似文献   
62.
The Epstein-Barr virus (EBV) is associated with various lymphoproliferative disorders and lymphomas. We have previously demonstrated that treating wild-type TP53-expressing B cell lines with the TP53 pathway activator nutlin-3 induced apoptosis in EBV-negative and EBV-positive latency I cells whereas EBV-positive latency III cells remained much more apoptosis-resistant. Here, we report a constitutively high level of autophagy in these resistant cells which express high levels of the proautophagic protein BECN1/Beclin 1 based, at least in part, on the activation of the NFKB signaling pathway by the viral protein LMP1. Following treatment with nutlin-3, several autophagy-stimulating genes were upregulated both in EBV-negative and EBV-positive latency III cells. However the process of autophagy was only triggered in the latter and was associated with an upregulation of SESN1/sestrin 1 and inhibition of MTOR more rapid than in EBV-negative cells. A treatment with chloroquine, an inhibitor of autophagy, potentiated the apoptotic effect of nutlin-3, particularly in those EBV-positive cells which were resistant to apoptosis induced by nutlin-3 alone, thereby showing that autophagy participates in this resistant phenotype. Finally, using immunohistochemical staining, clinical samples from various B cell lymphoproliferations with the EBV-positive latency II or III phenotype were found to harbor a constitutively active autophagy.  相似文献   
63.
Cilia have been observed in cells of the chick embryonic notochord in different developmental stages. The ciliated notochordal cells were present both at the center and at the periphery of the organ. A well outlined central cavity in the notochord was not observed.  相似文献   
64.
Cyanobacteria have long been thought to induce the formation of Ca‐carbonates as secondary by‐products of their metabolic activity, by shifting the chemical composition of their extracellular environment to conditions favoring mineral precipitation. Some cyanobacterial species forming Ca‐carbonates intracellularly were recently discovered. However, the environmental conditions under which this intracellular biomineralization process can occur and the impact of cyanobacterial species forming Ca‐carbonates intracellularly on extracellular carbonatogenesis are not known. Here, we show that these cyanobacteria can form Ca‐carbonates intracellularly while growing in extracellular solutions undersaturated with respect to all Ca‐carbonate phases, that is, conditions thermodynamically unfavorable to mineral precipitation. This shows that intracellular Ca‐carbonate biomineralization is an active process; that is, it costs energy provided by the cells. The cost of energy may be due to the active accumulation of Ca intracellularly. Moreover, unlike cyanobacterial strains that have been usually considered before by studies on Ca‐carbonate biomineralization, cyanobacteria forming intracellular carbonates may slow down or hamper extracellular carbonatogenesis, by decreasing the saturation index of their extracellular solution following the buffering of the concentration of extracellular calcium to low levels.  相似文献   
65.
66.
67.
NCp7, the nucleocapsid protein of the human immunodeficiency virus type 1, induces an ordered aggregation of RNAs, a mechanism that is thought to be involved in the NCp7-induced promotion of nucleic acid annealing. To further investigate this aggregation, the morphology and the properties of the NCp7-induced aggregates of the model RNA homoribopolymer, polyA, were investigated by electron microscopy in various conditions. In almost all the tested conditions, the aggregates were spherical and consisted of a central dense core surrounded by a less dense halo made of NCp7-covered polyA molecules. The formation of these aggregates with a narrow distribution of sizes constitutes a distinctive feature of NCp7 over other single-stranded nucleic acid binding proteins. In most conditions, at the shortest times that can be reached experimentally, all the polyA molecules were already incorporated in small aggregates, suggesting that the nucleation step and the first aggregation events took place rapidly. The aggregates then orderly grew with time by fusion of the smaller aggregates to give larger ones. The aggregate halo was important in the fusion process by initiating the bridging between the colliding aggregates. In the presence of an excess of protein, the aggregates grew rapidly but were loosely packed and dissociated easily, suggesting adverse protein-protein interactions in the aggregates obtained in these conditions. In the presence of an excess of nucleotides, the presence of both amorphous nonspherical and slowly growing spherical aggregates suggested some changes in the mechanism of aggregate growth due to an incomplete covering of polyA molecules by NCp7. Finally, we showed that in the absence of added salt, the aggregate fusions were unfavored but not the initial events giving the first aggregates, the reverse being true in the presence of high salt concentrations (≥300 mM). © 1998 John Wiley & Sons, Inc. Biopoly 45: 217–229, 1998  相似文献   
68.
HPLC-UV guided isolation of the culture broth of a marine bacterium Saccharomonospora sp. CNQ-490 has led to the isolation of two new natural products, lodopyridones B and C (1 and 2) along with the previously reported lodopyridone A (3). Their chemical structures were established from the interpretation of 2D NMR spectroscopic data and the comparison of NMR data with the lodopyridone A (3). Lodopyridones B and C (1 and 2) possess the thiazole, and chloroquinoline groups which are characteristic features of these molecules. Lodopyridones A–C show weak inhibitory activities on the β-site amyloid precursor protein cleaving enzyme 1 (BACE1).  相似文献   
69.
Over the last several decades many picture-winged Drosophila have become less common in both geographical distribution and local population size (pers. obs., Foote pers. comm., Montgomerey pers. comm.). Here we report on a study of two Hawaiian Drosophila species, D. engyochracea, and D. hawaiiensis, to determine the impact that changes in population sizes over the past thirty years have had on the genetic diversity of these species. D. engyochracea is known from only two locations on the Island of Hawai'i (Kipuka Ki and Kipuka Pua'ulu), while D. hawaiiensis is currently more wide spread across Hawai'i Island. We collected 65 D. hawaiiensis and 66 D. engyochracea from two forest patches (kipuka) isolated by a 400 year old volcanic ash deposit. DNA sequence data for 515 bases of the mitochondrial gene COII was analyzed for both species to estimate relative total genetic diversity as well as inter-kipuka gene flow. The more wide spread species, D. hawaiiensis, has more genetic diversity (23 vs. 11 unique haplotypes) than the rarer species, D. engyochracea. The distribution of haplotypes in the kipuka is consistent with more gene flow in D. engyochracea than in D. hawaiiensis. Phylogenetic analysis indicates a small number of individuals morphologically identified as one species but have DNA sequence diagnostic for the other species. These results are consistent with these individuals being descendant from hybrids between species.  相似文献   
70.
The O antigen of serotype 1c differs from the unmodified O antigen of serotype Y by the addition of a disaccharide (two glucosyl groups) to the tetrasaccharide repeating unit. It was shown here that addition of the first glucosyl group is mediated by the previously characterized gtrI cluster, which is found within a cryptic prophage at the proA locus in the bacterial chromosome. Transposon mutagenesis was performed to disrupt the gene responsible for addition of the second glucosyl group, causing reversion to serotype 1a. Colony immunoblotting was used to identify the desired revertants, and subsequent sequencing, cloning, and functional expression successfully identified the gene encoding serotype 1c-specific O-antigen modification. This gene (designated gtrIC) was present as part of a three-gene cluster, similar to other S. flexneri glucosyltransferase genes. Relative to the other S. flexneri gtr clusters, the gtrIC cluster is more distantly related and appears to have arrived in S. flexneri from outside the species. Analysis of surrounding sequence suggests that the gtrIC cluster arrived via a novel bacteriophage that was subsequently rendered nonfunctional by a series of insertion events.Shigella flexneri is a pathovar of Escherichia coli that is the main causative agent of endemic bacillary dysentery (shigellosis). It is estimated that S. flexneri is responsible for approximately 100 million shigellosis cases annually, resulting in hundreds of thousands of deaths, predominantly in young children (11). Currently no vaccine is available, although there is evidence to suggest that serotype-specific immunity occurs following infection and that induction of immunity can be replicated with vaccines (9). Shigella serotype diversity arises due to differences in the chemical structure of the O-antigen repeating unit in the lipopolysaccharide, which is the main target of the adaptive host immune response following infection.Because immunity to S. flexneri can be conferred by the induction of antibodies directed against the O antigen, an understanding of the prevalence of different serotypes and the underlying basis of serotype diversity can inform appropriate vaccine design. All S. flexneri serotypes (with the exception of serotype 6) share a common O-antigen backbone, consisting of a repeating tetrasaccharide unit that is comprised of one N-acetylglucosamine residue (GlcNAc) and three rhamnose residues (RhaI, RhaII, and RhaIII) (14). The 12 traditionally recognized S. flexneri serotypes differ by the presence or absence of just six different chemical modifications (glucosylations or O acetylations) of the O antigen. The genes responsible for these O-antigen modifications are introduced into the bacterial genome via bacteriophages (3). Glucosylation of the S. flexneri O antigen is mediated by three genes [gtrA, gtrB, and gtr(type)] that are arranged in a single operon known as a gtr cluster. gtrA and gtrB are highly conserved between different gtr clusters and encode proteins involved in transferring the glucosyl group from the cytoplasm into the periplasm, where O-antigen modification is thought to take place. gtr(type) is unique to each gtr cluster and encodes a glucosyltransferase that is responsible for attaching the glucosyl group to a specific sugar unit of the O antigen via a specific linkage (3).Investigations of S. flexneri have typically focused on serotypes for which commercially available typing sera are available. More recently, it has become clear that other serotypes are also epidemiologically important. In Bangladesh in the late 1980s, two novel S. flexneri strains that did not agglutinate with antibodies specific for the traditionally recognized serotypes were isolated (4). Chemical analysis of the O antigen revealed that these strains belonged to a new serotype, which was named serotype 1c due to the similarity its O antigen shares with the O antigens of serotype 1a and 1b strains (19). Serotype 1c has since been isolated in Egypt, Indonesia, Pakistan, and Vietnam (6, 15, 18). Serotype 1c was shown to be the most prevalent S. flexneri serotype in a northern province of Vietnam, accounting for more than a third of all S. flexneri strains isolated from 1998 to 1999 (15). Identification of serotype 1c currently relies on agglutination testing using monoclonal antibody MASF Ic (19).The O antigen of serotype 1c is distinguished by the presence of a disaccharide (two glucosyl groups) linked to the GlcNAc in the tetrasaccharide repeating unit of the O antigen. The first glucosyl group is joined to GlcNAc via an α1→4 linkage, as occurs in the O antigen of serotype 1a and serotype 1b strains (type I modification). The O antigen of serotype 1c is distinguished by the presence of a second glucosyl group that is linked to the first via an α1→2 linkage (Fig. (Fig.1).1). Type Ia modification is prerequisite to type Ic modification.Open in a separate windowFIG. 1.Chemical structure of the tetrasaccharide repeat units in the O antigens of S. flexneri serotypes 1a and 1c. Note that the O antigen of serotype 1b (not shown) differs from that of serotype 1a by the O acetylation of l-RhaIII.In this study, the genetic basis of O-antigen modification in serotype 1c was elucidated. Serotype 1c strains isolated from different locations and times were compared to gain insight into the evolution of this serotype. This is the first report of the identification of a glucosyltransferase gene that is responsible for addition of the second glucosyl group, causing serotype conversion from serotype 1a to serotype 1c.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号