全文获取类型
收费全文 | 2183篇 |
免费 | 185篇 |
国内免费 | 1篇 |
专业分类
2369篇 |
出版年
2022年 | 22篇 |
2021年 | 35篇 |
2020年 | 25篇 |
2019年 | 33篇 |
2018年 | 27篇 |
2017年 | 20篇 |
2016年 | 45篇 |
2015年 | 82篇 |
2014年 | 82篇 |
2013年 | 99篇 |
2012年 | 111篇 |
2011年 | 127篇 |
2010年 | 76篇 |
2009年 | 69篇 |
2008年 | 74篇 |
2007年 | 80篇 |
2006年 | 90篇 |
2005年 | 71篇 |
2004年 | 76篇 |
2003年 | 75篇 |
2002年 | 60篇 |
2001年 | 43篇 |
2000年 | 55篇 |
1999年 | 39篇 |
1998年 | 22篇 |
1997年 | 22篇 |
1996年 | 17篇 |
1995年 | 17篇 |
1994年 | 17篇 |
1992年 | 27篇 |
1991年 | 30篇 |
1990年 | 31篇 |
1989年 | 31篇 |
1988年 | 39篇 |
1987年 | 37篇 |
1986年 | 37篇 |
1985年 | 37篇 |
1984年 | 43篇 |
1983年 | 41篇 |
1982年 | 17篇 |
1981年 | 19篇 |
1980年 | 22篇 |
1979年 | 32篇 |
1978年 | 18篇 |
1977年 | 21篇 |
1975年 | 18篇 |
1974年 | 19篇 |
1973年 | 31篇 |
1971年 | 16篇 |
1968年 | 16篇 |
排序方式: 共有2369条查询结果,搜索用时 17 毫秒
991.
Improving our capacity for predicting range shifts requires improved theory exploring the interplay between ecological and evolutionary processes and the (changing) environment. We introduce an individual‐based model incorporating simple stage structure and genetically determined resource allocation rules. Population dynamics are mediated by the resources available and the individual's genetics, and density dependence emerges solely as a consequence of resource levels decreasing as population density increases. Running the model for a set of stylised range‐expansion scenarios reveals the extent to which eco‐evolutionary processes can matter: spatial assortment of individuals possessing effective range expansion strategies (higher dispersal propensity, semelparity rather than iteroparity) can substantially accelerate range advance, and this is more important than the contribution of novel mutations arising during range expansion. In simulations of range expansion there is a greater risk of extinction when all individuals are given the mean strategy evolved in a stationary range. Additionally, our results demonstrate that the erosion of inter‐individual variability during a range‐shift can depress population abundance for lengthy periods, even after the climate has stabilised. Our theoretical results highlight the importance of accounting for inter‐individual variability in future predictive modelling of species' responses to environmental change. 相似文献
992.
993.
Lincoln D Nadauld Sarah Garcia Georges Natsoulis John M Bell Laura Miotke Erik S Hopmans Hua Xu Reetesh K Pai Curt Palm John F Regan Hao Chen Patrick Flaherty Akifumi Ootani Nancy R Zhang James M Ford Calvin J Kuo Hanlee P Ji 《Genome biology》2014,15(8)
Background
Gastric cancer is the second-leading cause of global cancer deaths, with metastatic disease representing the primary cause of mortality. To identify candidate drivers involved in oncogenesis and tumor evolution, we conduct an extensive genome sequencing analysis of metastatic progression in a diffuse gastric cancer. This involves a comparison between a primary tumor from a hereditary diffuse gastric cancer syndrome proband and its recurrence as an ovarian metastasis.Results
Both the primary tumor and ovarian metastasis have common biallelic loss-of-function of both the CDH1 and TP53 tumor suppressors, indicating a common genetic origin. While the primary tumor exhibits amplification of the Fibroblast growth factor receptor 2 (FGFR2) gene, the metastasis notably lacks FGFR2 amplification but rather possesses unique biallelic alterations of Transforming growth factor-beta receptor 2 (TGFBR2), indicating the divergent in vivo evolution of a TGFBR2-mutant metastatic clonal population in this patient. As TGFBR2 mutations have not previously been functionally validated in gastric cancer, we modeled the metastatic potential of TGFBR2 loss in a murine three-dimensional primary gastric organoid culture. The Tgfbr2 shRNA knockdown within Cdh1-/-; Tp53-/- organoids generates invasion in vitro and robust metastatic tumorigenicity in vivo, confirming Tgfbr2 metastasis suppressor activity.Conclusions
We document the metastatic differentiation and genetic heterogeneity of diffuse gastric cancer and reveal the potential metastatic role of TGFBR2 loss-of-function. In support of this study, we apply a murine primary organoid culture method capable of recapitulating in vivo metastatic gastric cancer. Overall, we describe an integrated approach to identify and functionally validate putative cancer drivers involved in metastasis.Electronic supplementary material
The online version of this article (doi:10.1186/s13059-014-0428-9) contains supplementary material, which is available to authorized users. 相似文献994.
The location of genetic factors affecting a quantitative character in wheat 总被引:11,自引:2,他引:11 下载免费PDF全文
Law CN 《Genetics》1966,53(3):487-498
995.
996.
Lei Zhang Hui Zhao Yu Qiu Horace H. Loh Ping-Yee Law 《The Journal of biological chemistry》2009,284(4):1990-2000
Recent studies have revealed that in G protein-coupled receptor signalings
switching between G protein- and β-arrestin (βArr)-dependent
pathways occurs. In the case of opioid receptors, the signal is switched from
the initial inhibition of adenylyl cyclase (AC) to an increase in AC activity
(AC activation) during prolonged agonist treatment. The mechanism of such AC
activation has been suggested to involve the switching of G proteins activated
by the receptor, phosphorylation of signaling molecules, or receptor-dependent
recruitment of cellular proteins. Using protein kinase inhibitors, dominant
negative mutant studies and mouse embryonic fibroblast cells isolated from Src
kinase knock-out mice, we demonstrated that μ-opioid receptor
(OPRM1)-mediated AC activation requires direct association and activation of
Src kinase by lipid raft-located OPRM1. Such Src activation was independent of
βArr as indicated by the ability of OPRM1 to activate Src and AC after
prolonged agonist treatment in mouse embryonic fibroblast cells lacking both
βArr-1 and -2. Instead the switching of OPRM1 signals was dependent on
the heterotrimeric G protein, specifically Gi2 α-subunit.
Among the Src kinase substrates, OPRM1 was phosphorylated at Tyr336
within NPXXY motif by Src during AC activation. Mutation of this Tyr
residue, together with mutation of Tyr166 within the DRY motif to
Phe, resulted in the complete blunting of AC activation. Thus, the recruitment
and activation of Src kinase by OPRM1 during chronic agonist treatment, which
eventually results in the receptor tyrosine phosphorylation, is the key for
switching the opioid receptor signals from its initial AC inhibition to
subsequent AC activation.Classical G protein-coupled receptor
(GPCR)2 signaling
involves the activation of specific heterotrimeric G proteins and the
subsequent dissociation of α- and βγ-subunits. These G
protein subunits serve as the activators and/or inhibitors of several effector
systems, including adenylyl cyclases, phospholipases, and ion channels
(1). However, recent studies
have shown that GPCR signaling deviates from such a classical linear model.
For example, in kidney and colonic epithelial cells, protease-activated
receptor 1 can transduce its signals through either Gαi/o or
Gαq subunits via inhibition of small GTPase RhoA or
activation of RhoD. Thus, RhoA and RhoD act as molecular switches between the
negative and positive signaling activity of protease-activated receptor 1
(2). Another example is the
ability of β2-adrenergic receptor to switch from
Gs-dependent pathways to non-classical signaling pathways by
coupling to pertussis toxin-sensitive Gi proteins in a
cAMP-dependent protein kinase/protein kinase C phosphorylation-dependent
manner. In this case, the phosphorylation-induced switch in G protein coupling
provides the receptor access to alternative signaling pathways. For
β2-adrenergic receptors, this leads to a
Gi-dependent activation of MAP kinase
(3,
4). Furthermore the involvement
of protein scaffolds, such as β-arrestins in the MAP kinase cascade,
could also alter the GPCR signaling
(5–8).
Hence the formation of “signaling units” or
“receptosomes” would influence the GPCR signaling process and
destination.For opioid receptors, which are members of the rhodopsin GPCR subfamily
receptors, signal switching is also observed. Normally opioid receptors
inhibit AC activity, activate the MAP kinases and Kir3 K+ channels,
inhibit the voltage-dependent Ca2+ channels, and regulate other
effectors such as phospholipase C
(9). However, during prolonged
agonist treatment, not only is there a blunting of these cellular responses
but also a compensatory increase in intracellular cAMP level, which is
particularly significant upon the removal of the agonist or the addition of an
antagonist such as naloxone
(10–12).
This compensatory adenylyl cyclase activation phenomenon has been postulated
to be responsible for the development of drug tolerance and dependence
(13). The observed change from
receptor-mediated AC inhibition to receptor-mediated AC activation reflects
possible receptor signal switching. Although the exact mechanism for such
signal changes has yet to be elucidated, activation of specific protein
kinases and subsequent phosphorylation of AC isoforms
(14,
15) and other signaling
molecules (16) have been
suggested to be the key for observed AC activation. Among all the protein
kinases studied, involvement of protein kinase C, MAP kinase, and Raf-1 has
been implicated in the activation of AC
(17–19).
Alternative mechanisms, such as agonist-induced receptor internalization and
the increase in the constitutive activities of the receptor, also have been
suggested to play a role in increased AC activity after prolonged opioid
agonist treatment (20).
Earlier studies also implicated the switching of the opioid receptor from
Gi/Go to Gs coupling during chronic agonist
treatment (21). Regardless of
the mechanism, the exact molecular events that lead to the switching of opioid
receptor from an inhibitory response to a stimulatory response remain
elusive.Src kinases, which are members of the nonreceptor tyrosine kinase family,
have been implicated in GPCR function because several Src family members such
as cSrc, Fyn, and Yes have been reported to be activated by several GPCRs,
including β2-
(22) and β3
(23)-adrenergic,
M2- (24) and
M3 (25)-muscarinic,
and bradykinin receptors (26).
The GPCRs that are capable of activating Src predominantly couple to
Gi/o family G proteins
(27). Src kinases appear to
associate with, and be activated by, GPCRs themselves either through direct
interaction with intracellular receptor domains or by binding to
GPCR-associated proteins, such as G protein subunits or β-arrestins
(27). Src kinase has been
reported to be activated by κ-
(28) and δ
(29)-opioid receptors and
regulate the c-Jun kinase and MAP kinase activities. Src kinase within the
nucleus accumbens has been implicated in the rewarding effect and
hyperlocomotion induced by morphine in mice
(30). However, it is not clear
whether the Src kinase is activated and involved in the signal transduction in
AC activation after chronic opioid agonist administration.Previously we reported that the lipid raft location of the receptor and the
Gαi2 proteins are two prerequisites for the observed increase
in AC activity during prolonged agonist treatment
(31,
32). Because various protein
kinases including Src kinases and G proteins have been shown to be enriched in
lipid rafts (33), the roles of
these cellular proteins in the eventual switching of opioid receptor signals
from inhibition to stimulation of AC activity were examined in the current
studies. We were able to demonstrate that the association with and subsequent
activation of Src kinase by the μ-opioid receptor (OPRM1), which leads to
eventual tyrosine phosphorylation of OPRM1, are the cellular events required
for the switching of opioid receptor signaling upon chronic agonist
treatment. 相似文献
997.
998.
Hobbie KR Deangelo AB King LC Winn RN Law JM 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2009,149(2):141-151
Recent changes in the risk assessment landscape underscore the need to be able to compare the results of toxicity and dose-response testing between a growing list of animal models and, quite possibly, an array of in vitro screening assays. How do we compare test results for a given compound between vastly different species? For example, what dose level in the ambient water of a small fish model would be equivalent to 10 ppm of a given compound in the rat's drinking water? Where do we begin? To initially address these questions, and in order to compare dose-response tests in a standard rodent model with a fish model, we used the concept of molecular dose. Assays that quantify types of DNA damage that are directly relevant to carcinogenesis integrate the factors such as chemical exposure, uptake, distribution, metabolism, etc. that tend to vary so widely between different phyletic levels. We performed parallel exposures in F344 rats and Japanese medaka (Oryzias latipes) to the alkylating hepatocarcinogen, dimethylnitrosamine (DMN). In both models, we measured the DNA adducts 8-hydroxyguanine, N(7)-methylguanine and O(6)-methylguanine in the liver; mutation frequency using lambda cII transgenic medaka and lambda cII transgenic (Big Blue(R)) rats; and early morphological changes in the livers of both models using histopathology and immunohistochemistry. Pulse dose levels in fish were 0, 10, 25, 50, or 100 ppm DMN in the ambient water for 14 days. Since rats are reported to be especially sensitive to DMN, they received 0, 0.1, 1, 5, 10, or 25 ppm DMN in the drinking water for the same time period. While liver DNA adduct concentrations were similar in magnitude, mutant frequencies in the DMN-exposed medaka were up to 20 times higher than in the Big Blue rats. Future work with other compounds will generate a more complete picture of comparative dose response between different phyletic levels and will help guide risk assessors using "alternative" models. 相似文献
999.
1000.