首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   31篇
  318篇
  2022年   3篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   18篇
  2012年   6篇
  2011年   13篇
  2010年   2篇
  2009年   6篇
  2008年   11篇
  2007年   10篇
  2006年   12篇
  2005年   11篇
  2004年   14篇
  2003年   13篇
  2002年   7篇
  2001年   14篇
  2000年   9篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1996年   8篇
  1994年   6篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   6篇
  1985年   8篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   7篇
  1979年   7篇
  1978年   5篇
  1975年   2篇
  1974年   5篇
  1973年   2篇
  1972年   6篇
  1969年   3篇
  1966年   4篇
  1955年   2篇
  1954年   2篇
  1935年   2篇
  1924年   2篇
排序方式: 共有318条查询结果,搜索用时 0 毫秒
31.
32.
Distribution Coding in the Visual Pathway   总被引:1,自引:0,他引:1       下载免费PDF全文
Although a variety of types of spike interval histograms have been reported, little attention has been given to the spike interval distribution as a neural code and to how different distributions are transmitted through neural networks. In this paper we present experimental results showing spike interval histograms recorded from retinal ganglion cells of the cat. These results exhibit a clear correlation between spike interval distribution and stimulus condition at the retinal ganglion cell level. The averaged mean rates of the cells studied were nearly the same in light as in darkness whereas the spike interval histograms were much more regular in light than in darkness. We present theoretical models which illustrate how such a distribution coding at the retinal level could be “interpreted” or recorded at some higher level of the nervous system such as the lateral geniculate nucleus. Interpretation is an essential requirement of a neural code which has often been overlooked in modeling studies. Analytical expressions are derived describing the role of distribution coding in determining the transfer characteristics of a simple interaction model and of a lateral inhibition network. Our work suggests that distribution coding might be interpreted by simply interconnected neural networks such as relay cell networks, in general, and the primary thalamic sensory nuclei in particular.  相似文献   
33.
The distribution of amiloride-sensitive sodium channels (ASSCs) in taste buds isolated from the oral cavity of hamsters was assessed by patch clamp recording. In contrast to the case for rats, taste cells from the fungiform, foliate and vallate papillae and from the soft palate all contain functional ASSCs. The differential distribution of ASSCs between the hamster and the rat may be important for understanding the physiology underlying the differing behavioral responses of these species to sodium salts.   相似文献   
34.

Background

Of the animals typically used to study fertilization-induced calcium dynamics, none is as accessible to genetics and molecular biology as the model organism Caenorhabditis elegans. Motivated by the experimental possibilities inherent in using such a well-established model organism, we have characterized fertilization-induced calcium dynamics in C. elegans.

Results

Owing to the transparency of the nematode, we have been able to study the calcium signal in C. elegans fertilization in vivo by monitoring the fluorescence of calcium indicator dyes that we introduce into the cytosol of oocytes. In C. elegans, fertilization induces a single calcium transient that is initiated soon after oocyte entry into the spermatheca, the compartment that contains sperm. Therefore, it is likely that the calcium transient is initiated by contact with sperm. This calcium elevation spreads throughout the oocyte, and decays monotonically after which the cytosolic calcium concentration returns to that preceding fertilization. Only this single calcium transient is observed.

Conclusion

Development of a technique to study fertilization induced calcium transients opens several experimental possibilities, e.g., identification of the signaling events intervening sperm binding and calcium elevation, identifying the possible roles of the calcium elevation such as the completion of meiosis, the formation of the eggshell, and the establishing of the embryo's axis of symmetry.  相似文献   
35.
A panel of monoclonal antibodies to neurofilaments have been investigated with regard to the location of their respective epitopes on neurofilament polypeptides and their ability to label the neurofibrillary tangles and paired helical filaments (PHF) which are characteristic of Alzheimer's disease. All of the neurofilament monoclonal antibodies that label tangles and PHF are directed against epitopes in the side arm domains of the two larger neurofilament polypeptides, NF-H and NF-M, and do not recognise the alpha-helical rod domains of these proteins. Immuno-electron microscopy demonstrates that the neurofilament antibodies label the constituent PHF per se and do not simply stain neurofilaments that might be admixed with PHF. These neurofilament epitopes are differentially retained by PHF, following isolation. Thus, antibody labelling of PHF is not simply due to the presence of normal neurofilament polypeptides. We propose that in tangle-bearing neurons, neurofilaments are degraded by proteases and that it is fragments of the side arms which contribute to the composition of PHF.  相似文献   
36.
The change in polyphenol content in the primed leaves of burley, flue-cured, and Turkish tobaccos during air-curing was related to the activities and isozymes of polyphenol oxidase and peroxidase. The quantity of chlorogenic acid was rapidly reduced during the first week of curing. The decrease in rutin content during curing was less significant, especially when the concentration of chlorogenic acid was high in leaf tissues. This result was further confirmed by in vitro assays with partially purified tobacco polyphenol oxidase.  相似文献   
37.
IgY is the principal serum antibody in birds and reptiles, and an IgY-like molecule was the evolutionary precursor of both mammalian IgG and IgE. A receptor for IgY on chicken monocytes, chicken leukocyte receptor AB1 (CHIR-AB1), lies in the avian leukocyte receptor cluster rather than the classical Fc receptor cluster where the genes for mammalian IgE and IgG receptors are found. IgG and IgE receptors bind to the lower hinge region of their respective antibodies with 1:1 stoichiometry, whereas the myeloid receptor for IgA, FcαRI, and the IgG homeostasis receptor, FcRn, which are found in the mammalian leukocyte receptor cluster, bind with 2:1 stoichiometry between the heavy chain constant domains 2 and 3 of each heavy chain. In this paper, the extracellular domain of CHIR-AB1 was expressed in a soluble form and shown to be a monomer that binds to IgY-Fc with 2:1 stoichiometry. The two binding sites have similar affinities: Ka1 = 7.22 ± 0.22 × 105 m−1 and Ka2 = 3.63 ± 1.03 × 106 m−1 (comparable with the values reported for IgA binding to its receptor). The affinity constants for IgY and IgY-Fc binding to immobilized CHIR-AB1 are 9.07 ± 0.07 × 107 and 6.11 ± 0.02 × 108 m−1, respectively, in agreement with values obtained for IgY binding to chicken monocyte cells and comparable with reported values for human IgA binding to neutrophils. Although the binding site for CHIR-AB1 on IgY is not known, the data reported here with a monomeric receptor binding to IgY at two sites with low affinity suggest an IgA-like interaction.Fc receptors link the specificity of the adaptive immune system with the effector mechanisms of innate immune cells. In birds and reptiles, IgY is the principal serum antibody, and both mammalian IgG and IgE have evolved from an IgY-like ancestor, so studies of IgY offer insights into their origins (1). The historical contribution of chicken immunology to a wider understanding of the subject has been considerable (2), and recently several chicken IgY-Fc receptors have been identified. In this paper, the chicken antibody, IgY, is shown to bind to a chicken leukocyte receptor, CHIR-AB1,4 in a different manner from that of its mammalian orthologues, IgG and IgE, to their respective Fc receptors.Phagocytosis, mediated in mammals by IgG, and passive cutaneous anaphylaxis, mediated by both IgG and IgE in mammals, have been observed in chickens (3, 4), presumably both effected by IgY. In vitro, IgY binds to monocyte cell lines (5, 6), and an IgY receptor (CHIR-AB1) has been identified that is able to mediate the influx of calcium into cells (5).The genes for the mammalian high affinity IgE receptor, and several IgG receptors, are located in the classical Fc receptor cluster, whereas in chickens, this cluster is represented by a single gene, the product of which has been expressed and found not to bind IgY (7). Intriguingly, the first IgY leukocyte receptor, CHIR-AB1, was found to be a member of the chicken leukocyte receptor cluster (LRC) (5), adjacent to over 100 genes with high intersequence homology (8). This finding, together with phylogenetic analysis of the orthologous Fc receptor gene clusters (7, 9), implies that during the evolution of the IgY-like ancestor of both IgG and IgE, antibody-Fc binding function migrated from proteins expressed in the LRC to those in the classical Fc receptor cluster. The human LRC is the site of FcαRI, the leukocyte receptor for IgA (an antibody involved in mucosal immunity), the fetal IgG receptor (FcRn, involved in adult IgG homeostasis), and also a number of natural killer cell receptors including the HLA-G ligand, KIR2DL4 (10). A further leukocyte receptor for chicken IgY, also related to LRC receptors, was identified recently, on chromosome 20 (11), and remains to be characterized.Typically, the stoichiometry of the receptor-antibody complex differs for receptors located in the classical Fc receptor cluster and the LRC. Crystal structures of IgG complexes with FcγRIII and of IgE with FcϵRI show 1:1 receptor:antibody stoichiometry, with the receptor binding across both heavy chains in the lower hinge (12). In contrast, the crystal structure of FcαRI complexed with IgA shows 2:1 stoichiometry (13) as does that of FcRn with IgG (14), with the two receptors binding between the heavy chain constant domains 2 and 3 on each heavy chain. The IgY/receptor interaction could have either stoichiometry; on the one hand, IgY is an orthologue of IgG and IgE, which can both show 1:1 stoichiometry, but on the other hand, the location of the IgY receptor, CHIR-AB1, in the same gene cluster as the IgA and FcRn receptors suggests the possibility of a 2:1 stoichiometry. Consistent with either of these binding modes, the crystal structure of IgY-Fc reveals that many of the residues located in the receptor-binding sites in human IgE, IgG, and IgA are present and accessible in IgY (15).The single extracellular domain of the chicken leukocyte IgY receptor, CHIR-AB1, has been expressed in insect cells by Arnon et al. (16), who showed that this preparation consists of a mixture of soluble monomer and dimer. Because of the heterogeneity of the protein, it was not possible to ascertain whether the observed 2:1 stoichiometry of receptor binding to antibody involved two monomers or a single dimer binding to IgY. Thus, it was not possible to answer the question of whether the antibody-receptor complex most resembles that of human IgA or of IgG and IgE. We have expressed the extracellular domain of CHIR-AB1 in human HEK cells. It is a monomer, and we report here that it binds to IgY and IgY-Fc with 2:1 stoichiometry.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号