首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1172篇
  免费   209篇
  2019年   13篇
  2017年   17篇
  2016年   21篇
  2015年   24篇
  2014年   41篇
  2013年   48篇
  2012年   61篇
  2011年   52篇
  2010年   38篇
  2009年   25篇
  2008年   35篇
  2007年   43篇
  2006年   45篇
  2005年   35篇
  2004年   41篇
  2003年   43篇
  2002年   41篇
  2001年   34篇
  2000年   45篇
  1999年   31篇
  1998年   15篇
  1997年   23篇
  1995年   14篇
  1994年   15篇
  1993年   15篇
  1992年   23篇
  1991年   33篇
  1990年   37篇
  1989年   11篇
  1988年   15篇
  1987年   18篇
  1986年   19篇
  1985年   13篇
  1984年   20篇
  1983年   13篇
  1982年   14篇
  1981年   11篇
  1980年   16篇
  1979年   15篇
  1978年   19篇
  1977年   11篇
  1976年   12篇
  1975年   17篇
  1974年   25篇
  1973年   24篇
  1972年   23篇
  1971年   18篇
  1970年   18篇
  1969年   12篇
  1968年   16篇
排序方式: 共有1381条查询结果,搜索用时 187 毫秒
101.
We report that kainate receptors are present on presynaptic GABAergic terminals contacting interneurons and that their activation increases GABA release. Application of kainate increased the frequency of miniature inhibitory postsynaptic currents recorded in CA1 interneurons. Local applications of glutamate but not of AMPA or NMDA also increased GABA quantal release. Application of kainate as well as synaptically released glutamate reduced the number of failures of GABAergic neurotransmission between interneurons. Thus, activation of presynaptic kainate receptors increases the probability of GABA release at interneuron-interneuron synapses. Glutamate may selectively control the communication between interneurons by increasing their mutual inhibition.  相似文献   
102.
A competitive PCR (cPCR) assay was developed to quantify the nematophagous fungus Verticillium chlamydosporium in soil. A gamma-irradiated soil was seeded with different numbers of chlamydospores from V. chlamydosporium isolate 10, and samples were obtained at time intervals of up to 8 weeks. Samples were analyzed by cPCR and by plating onto a semiselective medium. The results suggested that saprophytic V. chlamydosporium growth did occur in soil and that the two methods detected different phases of growth. The first stage of growth, DNA replication, was demonstrated by the rapid increase in cPCR estimates, and the presumed carrying capacity (PCC) of the soil was reached after only 1 week of incubation. The second stage, an increase in fungal propagules presumably due to cell division, sporulation, and hyphal fragmentation, was indicated by a less rapid increase in CFU, and 3 weeks was required to reach the PCC. Experiments with field soil revealed that saprophytic fungal growth was limited, presumably due to competition from the indigenous soil microflora, and that the PCR results were less variable than the equivalent plate count results. In addition, the limit of detection of V. chlamydosporium in field soil was lower than that in gamma-irradiated soil, suggesting that there was a background population of the fungus in the field, although the level was below the limit of detection. Tomatoes were infected with the root knot nematode (RKN) or the potato cyst nematode (PCN) along with a PCN-derived isolate of the fungus (V. chlamydosporium isolate Jersey). Increases in fungal growth were observed in the rhizosphere of PCN-infested plants but not in the rhizosphere of RKN-infested plants after 14 weeks using cPCR. In this paper we describe for the first time PCR-based quantification of a fungal biological control agent for nematodes in soil and the rhizosphere, and we provide evidence for nematode host specificity that is highly relevant to the biological control efficacy of this fungus.  相似文献   
103.
T cells play a central role in many autoimmune diseases. A method to specifically target the function of autoreactive T cell clones would avoid the global immunosuppression associated with current therapies. To develop a molecule capable of inhibiting autoreactive T cell responses in vivo, single-chain peptide-I-A-IgG3 fusion proteins were constructed and expressed in both mammalian and insect cells. The fusion proteins were designed with an IgG3 Fc moiety to make them divalent, allowing TCR cross-linking, while lacking FcR binding and costimulation. The fusion proteins stimulated T cell hybridomas in vitro in a peptide-specific, MHC-restricted manner but failed to do so in soluble form. In vivo administration of an I-A(q) fusion protein, containing an immunodominant collagen II peptide, significantly delayed the onset and reduced the severity of collagen-induced arthritis in DBA/1 mice by induction of Ag-specific hyporesponsiveness. Such fusion proteins may be useful to study novel therapeutic approaches for T cell-mediated autoimmune diseases.  相似文献   
104.
The inhibition of telomerase activity in actively dividing cells leads to suppression of cell growth after a time delay (inhibitory delay) required to reach a threshold telomeric DNA size. We developed a mathematical model of the dynamics of telomere size distribution and cell growth in the presence of telomere inhibitors that allowed quantification of the inhibitory delay. The model based on the solution of a system of differential equations described quantitatively recent experimental data on dynamics of cultured cells in presence of telomerase inhibitors. The analysis of the data by this model suggested the existence of at least two distinct subpopulations of cells with different proliferative activity. Size distribution of telomeres, fraction of proliferating cells, and tumor doubling times are of critical importance for the dynamics of cancer cells growth in presence of telomerase inhibitors. Rapidly growing cells with large telomeric DNA heterogeneity and small proliferating fractions as well as those with very short homogeneous telomeres would be the most sensitive to telomerase inhibitors.  相似文献   
105.
Although recent evidence has confirmed the importance of cytotoxic T-lymphocyte (CTL) responses in controlling human immunodeficiency virus type 1 and simian immunodeficiency virus replication, the relevance of the epitopic breadth of those CTL responses remains unexplored. In the present study, we sought to determine whether vaccination can expand CTL populations which recognize a repertoire of viral epitopes that is greater than is typically generated in the course of a viral infection. We demonstrate that potent secondary CTL responses to subdominant epitopes are rapidly generated following a pathogenic simian-human immunodeficiency virus challenge of rhesus monkeys vaccinated with plasmid DNA or recombinant modified vaccinia virus Ankara vaccines. These data indicate that prior vaccination can increase the breadth of the CTL response that evolves after an AIDS virus infection.  相似文献   
106.
The nitrogen-fixing symbiosis between Rhizobiaceae and legumes is one of the best-studied interactions established between prokaryotes and eukaryotes. The plant develops root nodules in which the bacteria are housed, and atmospheric nitrogen is fixed into ammonia by the rhizobia and made available to the plant in exchange for carbon compounds. It has been hypothesized that this symbiosis evolved from the more ancient arbuscular mycorrhizal (AM) symbiosis, in which the fungus associates with roots and aids the plant in the absorption of mineral nutrients, particularly phosphate. Support comes from several fronts: 1) legume mutants where Nod(-) and Myc(-) co-segregate, and 2) the fact that various early nodulin (ENOD) genes are expressed in legume AM. Both strongly argue for the idea that the signal transduction pathways between the two symbioses are conserved. We have analyzed the responses of four classes of non-nodulating Melilotus alba (white sweetclover) mutants to Glomus intraradices (the mycorrhizal symbiont) to investigate how Nod(-) mutations affect the establishment of this symbiosis. We also re-examined the root hair responses of the non-nodulating mutants to Sinorhizobium meliloti (the nitrogen-fixing symbiont). Of the four classes, several sweetclover sym mutants are both Nod(-) and Myc(-). In an attempt to decipher the relationship between nodulation and mycorrhiza formation, we also performed co-inoculation experiments with mutant rhizobia and Glomus intraradices on Medicago sativa, a close relative of M. alba. Even though sulfated Nod factor was supplied by some of the bacterial mutants, the fungus did not complement symbiotically defective rhizobia for nodulation.  相似文献   
107.
The kinetic mechanism of mitogen-activated protein kinase activated protein kinase-2 (MAPKAPK2) was investigated using a peptide (LKRSLSEM) based on the phosphorylation site found in serum response factor (SRF). Initial velocity studies yielded a family of double-reciprocal lines that appear parallel and indicative of a ping-pong mechanism. The use of dead-end inhibition studies did not provide a definitive assignment of a reaction mechanism. However, product inhibition studies suggested that MAPKAPK2 follows an ordered bi-bi kinetic mechanism, where ATP must bind to the enzyme prior to the SRF-peptide and the phosphorylated product is released first, followed by ADP. In agreement with these latter results, surface plasmon resonance measurements demonstrate that the binding of the inhibitor peptide to MAPKAPK2 requires the presence of ATP. Furthermore, competitive inhibitors of ATP, adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP) and a staurosporine analog (K252a), can inhibit this ATP-dependent binding providing further evidence that the peptide substrate binds preferably to the E:ATP complex.  相似文献   
108.
We have identified three members of the AGAP subfamily of ASAP family ADP-ribosylation factor GTPase-activating proteins (Arf GAPs). In addition to the Arf GAP domain, these proteins contain GTP-binding protein-like, ankyrin repeat and pleckstrin homology domains. Here, we have characterized the ubiquitously expressed AGAP1/KIAA1099. AGAP1 had Arf GAP activity toward Arf1>Arf5>Arf6. Phosphatidylinositol 4,5-bisphosphate and phosphatidic acid synergistically stimulated GAP activity. As found for other ASAP family Arf GAPs, the pleckstrin homology domain was necessary for activity. Deletion of the GTP-binding protein-like domain affected lipid dependence of Arf GAP activity. In vivo effects of AGAP1 were distinct from other ASAP family Arf GAPs. Overexpressed AGAP1 induced the formation of and was associated with punctate structures containing the endocytic markers transferrin and Rab4. AP1 was redistributed from the trans-Golgi to the punctate structures. Like other ASAP family members, AGAP1 overexpression inhibited the formation of PDGF-induced ruffles. However, distinct from other ASAP family members, AGAP1 also induced the loss of actin stress fibers. Thus, AGAP1 is a phosphoinositide-dependent Arf GAP that impacts both the endocytic compartment and actin.  相似文献   
109.
Violence and gravity cannot be ignored when considering HIV and AIDS challenges. However, coping with this pandemic disease caused us to build up and experience new ways of solidarity that have transformed our views of medical care and public health. The few achievements of these years throw a new light on the figure of the ill person. They brought new references allowing a different understanding of the political stakes of public health. Partnership or even therapeutic alliance are now a framework to the understanding of respect, solidarity and equity. New viewpoints exist on the health care relationship. Our achievements show at first injustice in the access of treatments at the international level. They make clear our moral responsibilities toward every person that require a treatment. This idea should be emphasized when applied on the most vulnerable communities. The most urgent challenges that remain today are extreme precariousness situations, treatment access conditions, information, and quality of life.  相似文献   
110.
Potato cyst nematodes (PCN) are serious pests in commercial potato production, causing yield losses valued at approximately $300 million in the European Community. The nematophagous fungus Plectosphaerella cucumerina has demonstrated its potential as a biological control agent against PCN populations by reducing field populations by up to 60% in trials. The use of biological control agents in the field requires the development of specific techniques to monitor the release, population size, spread or decline, and pathogenicity against its host. A range of methods have therefore been developed to monitor P. cucumerina. A species-specific PCR primer set (PcCF1-PcCR1) was designed that was able to detect the presence of P. cucumerina in soil, root, and nematode samples. PCR was combined with a bait method to identify P. cucumerina from infected nematode eggs, confirming the parasitic ability of the fungus. A selective medium was adapted to isolate the fungus from root and soil samples and was used to quantify the fungus from field sites. A second P. cucumerina-specific primer set (PcRTF1-PcRTR1) and a Taqman probe (PcRTP1) were designed for real-time PCR quantification of the fungus and provided a very sensitive means of detecting the fungus from soil. PCR, bait, and culture methods were combined to investigate the presence and abundance of P. cucumerina from two field sites in the United Kingdom where PCN populations were naturally declining. All methods enabled differences in the activity of P. cucumerina to be detected, and the results demonstrated the importance of using a combination of methods to investigate population size and activity of fungi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号