首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   19篇
  2023年   3篇
  2021年   4篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   12篇
  2012年   5篇
  2011年   10篇
  2010年   5篇
  2009年   4篇
  2008年   8篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   7篇
  1999年   3篇
  1998年   7篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1984年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   6篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1970年   3篇
排序方式: 共有149条查询结果,搜索用时 287 毫秒
111.
112.
Protein kinase B (PKB/Akt) belongs to the AGC superfamily of related serine/threonine protein kinases. It is a key regulator downstream of various growth factors and hormones and is involved in malignant transformation and chemo-resistance. Full-length PKB protein has not been crystallised, thus studying the molecular mechanisms that are involved in its regulation in relation to its structure have not been simple. Recently, the dynamics between the inactive and active conformer at the molecular level have been described. The maintenance of PKB''s inactive state via the interaction of the PH and kinase domains prevents its activation loop to be phosphorylated by its upstream activator, phosphoinositide-dependent protein kinase-1 (PDK1). By using a multidisciplinary approach including molecular modelling, classical biochemical assays, and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM), a detailed model depicting the interaction between the different domains of PKB in its inactive conformation was demonstrated. These findings in turn clarified the molecular mechanism of PKB inhibition by AKT inhibitor VIII (a specific allosteric inhibitor) and illustrated at the molecular level its selectivity towards different PKB isoforms. Furthermore, these findings allude to the possible function of the C-terminus in sustaining the inactive conformer of PKB. This study presents essential insights into the quaternary structure of PKB in its inactive conformation. An understanding of PKB structure in relation to its function is critical for elucidating its mode of activation and discovering how to modulate its activity. The molecular mechanism of inhibition of PKB activation by the specific drug AKT inhibitor VIII has critical implications for determining the mechanism of inhibition of other allosteric inhibitors and for opening up opportunities for the design of new generations of modulator drugs.  相似文献   
113.

Background

Australia''s dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of dinosaurian groups, including groups previously considered to have had Gondwanan origins, such as the titanosaurs and carcharodontosaurids.

Methodology/Principal Findings

We describe three new dinosaurs from the late Early Cretaceous (latest Albian) Winton Formation of eastern Australia, including; Wintonotitan wattsi gen. et sp. nov., a basal titanosauriform; Diamantinasaurus matildae gen. et sp. nov., a derived lithostrotian titanosaur; and Australovenator wintonensis gen. et sp. nov., an allosauroid. We compare an isolated astragalus from the Early Cretaceous of southern Australia; formerly identified as Allosaurus sp., and conclude that it most-likely represents Australovenator sp.

Conclusion/Significance

The occurrence of Australovenator from the Aptian to latest Albian confirms the presence in Australia of allosauroids basal to the Carcharodontosauridae. These new taxa, along with the fragmentary remains of other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, including plesiomorphic forms (e.g. Wintonotitan and Australovenator) and more derived forms (e.g. Diamantinasaurus).  相似文献   
114.
New developments regarding the structure and in vivo dynamics of protein kinase B (PKB/Akt) have been recently exposed. Here, we specifically review how the use of multi-disciplinary approaches has resulted in reaching the recent progress made to relate the quaternary structure of PKB to its in vivo function. Using X-ray crystallography, the structure of PKB pleckstrin homology (PH) and kinase domains was determined separately. The molecular mechanisms involved in (a) the binding of the phosphoinositides to the PH domain and (b) the activation of the kinase with the rearrangement of the catalytic site and substrate binding were determined. In vitro, nuclear magnetic resonance and circular dychroism studies gave complementary information on the interaction of the PH domain with the phosphoinositides. However, the molecular nature and the function of the interactions between the PKB domains could not be deduced from the X-ray data since the full-length PKB has not been crystallised. In vitro, dynamic information on the inter-domain conformational changes related to PKB activation states emerged with the use of tandem mass spectrometry. Cell imaging and Förster resonance energy transfer provided in vivo dynamics. Molecular modelling and dynamic simulations in conjunction with mutagenesis and biochemical analysis were used to investigate the complex interactions between the PKB domains in vivo and understand at the molecular level how it linked to its activity. The compilation of the information obtained on the 3-D structure and the spatiotemporal dynamics of this widely studied oncogene could be applied to the study of other proteins. This inter-disciplinary approach led to a more profound understanding of PKB complex activation mechanism in vivo that will shed light onto new ideas and possibilities for modulating its activity.  相似文献   
115.
116.
The surfaces of flocculent and nonflocculent yeast cells have been examined by electron microscopy. Nonextractive preparative procedures for scanning electron microscopy allow comparison in which sharp or softened images of surface details (scars, etc.) are the criteria for relative abundance of flocculum material. Asexually flocculent budding-yeast cells cannot be distinguished from nonflocculent budding-yeast cells in scanning electron micrographs because the scar details of both are well resolved, being hard and sharp. On the other hand, flocculent fission-yeast cells are readily distinguished from nonflocculent cells because fission scars are mostly soft or obscured on flocculent cells, but sharp on nonflocculent cells. Sexually and asexually flocculent fission-yeast cells cannot be distinguished from one another as both are heavily clad in "mucilaginous" or "hairy" coverings. Examination of lightly extracted and heavily extracted flocculent fission-yeast cells by transmission electron microscopy provides micrographs consistent with the scanning electron micrographs.  相似文献   
117.
A model of the carbohydrate recognition domain CRD, residues 111-245, of hamster galectin-3 has been made using homology modeling and dynamics minimization methods. The model is based on the known x-ray structures of bovine galectin-1 and human galectin-2. The oligosaccharides NeuNAc-alpha2,3-Gal-beta1,4-Glc and GalNAc-alpha1, 3- [Fuc-alpha1,2]-Gal-beta1,4-Glc, known to be specific high-affinity ligands for galectin-3, as well as lactose recognized by all galectins were docked in the galectin-3 CRD model structure and a minimized binding conformation found in each case. These studies indicate a putative extended carbohydrate-binding subsite in the hamster galectin- 3 involving Arg139, Glu230, and Ser232 for NeuNAc-alpha2,3-; Arg139 and Glu160 for fucose-alpha1,2-; and Arg139 and Ile141 for GalNAc-alpha1,3- substituents on the primary galactose. Each of these positions is variable within the whole galectin family. Two of these residues, Arg139 and Ser232, were selected for mutagenesis to probe their importance in this newly identified putative subsite. Residue 139 adopts main-chain dihedral angles characteristic of an isolated bridge structural feature, while residue 232 is the C-terminal residue of beta- strand-11, and is followed immediately by an inverse gamma-turn. A systematic series of mutant proteins have been prepared to represent the residue variation present in the aligned sequences of galectins-1, - 2, and -3. Minimized docked models were generated for each mutant in complex with NeuNAc-alpha2,3-Gal-beta1,4-Glc, GalNAc-alpha1, 3-[Fuc- alpha1,2]-Gal-beta1,4- Glc, and Gal-beta1,4-Glc. Correlation of the computed protein-carbohydrate interaction energies for each lectin- oligosaccharide pair with the experimentally determined binding affinities for fetuin and asialofetuin or the relative potencies of lactose and sialyllactose in inhibiting binding to asiolofetuin is consistent with the postulated key importance of Arg139 in recognition of the extended sialylated ligand.   相似文献   
118.
Prochlorococcus play a crucial role in the ocean's biogeochemical cycling, but it remains controversial how they will respond to global warming. Here we assessed the response to temperature (22–30°C) of the growth dynamics and gene expression profiles of a Red Sea Prochlorococcus strain (RSP50) in a non-axenic culture. Both the specific growth rate (0.55–0.80 day−1) and cell size (0.04–0.07 μm3) of Prochlorococcus increased significantly with temperature. The primary production released extracellularly ranged from 20% to 34%, with humic-like fluorescent compounds increasing up to fivefold as Prochlorococcus reached its maximum abundance. At 30°C, genes involved in carbon fixation such as CsoS2 and CsoS3 and photosynthetic electron transport including PTOX were downregulated, suggesting a cellular homeostasis and energy saving mechanism response. In contrast, PTOX was found upregulated at 22°C and 24°C. Similar results were found for transaldolase, related to carbon metabolism, and citrate synthase, an important enzyme in the TCA cycle. Our data suggest that in spite of the currently warm temperatures of the Red Sea, Prochlorococcus can modulate its gene expression profiles to permit growth at temperatures lower than its optimum temperature (28°C) but is unable to cope with temperatures exceeding 30°C.  相似文献   
119.
The role of bottom-up (nutrient availability) and top-down (grazers and viruses mortality) controls on tropical bacterioplankton have been rarely investigated simultaneously from a seasonal perspective. We have assessed them through monthly samplings over 2 years in inshore and offshore waters of the central Red Sea differing in trophic status. Flow cytometric analysis allowed us to distinguish five groups of heterotrophic bacteria based on physiological properties (nucleic acid content, membrane integrity and active respiration), three groups of cyanobacteria (two populations of Synechococcus and Prochlorococcus), heterotrophic nanoflagellates (HNFs) and three groups of viruses based on nucleic acid content. The dynamics of bacterioplankton and their top-down controls varied with season and location, being more pronounced in inshore waters. HNFs abundances showed a strong preference for larger prey inshore (r = −0.62 to −0.59, p = 0.001–0.002). Positive relationships between viruses and heterotrophic bacterioplankton abundances were more marked inshore (r = 0.67, p < 0.001) than offshore (r = 0.44, p = 0.03). The negative correlation between HNFs and viruses abundances (r = −0.47, p = 0.02) in shallow waters indicates a persistent seasonal switch between protistan grazing and viral lysis that maintains the low bacterioplankton stocks in the central Red Sea area.  相似文献   
120.
Human histatins are a family of low-M(r), neutral to very basic, histidine-rich salivary polypeptides. They probably function as part of the nonimmune host defense system in the oral cavity. A 39-kb region of DNA containing the HIS1 and HIS2 genes was isolated from two human genomic phage libraries as a series of overlapping clones. The nucleotide sequences of the HIS1 gene and part of the HIS2(1) gene were determined. The transcribed region of HIS1 spans 8.5 kb and contains six exons and five introns. The HIS1 and HIS2(1) genes exhibit 89% overall sequence identity, with exon sequences exhibiting 95% identity. The two loci probably arose by a gene duplication event approximately 15-30 Mya. The HIS1 sequence data were also compared with that of STATH. Human statherin is a low-M(r) acidic phosphoprotein that acts as an inhibitor of precipitation of calcium phosphate salts in the oral cavity. The HIS1 and STATH genes show nearly identical overall gene structures. The HIS1 and STATH loci exhibit 77%-81% sequence identity in intron DNA and 80%-88% sequence identity in noncoding exons but only 38%-43% sequence identity in the protein-coding regions of exons 4 and 5. These unusual data suggest that HIS1, HIS2, and STATH belong to a single gene family exhibiting accelerated evolution between the HIS and STATH coding sequences.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号