首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2634篇
  免费   327篇
  2961篇
  2022年   20篇
  2021年   46篇
  2020年   22篇
  2019年   25篇
  2018年   40篇
  2017年   32篇
  2016年   46篇
  2015年   85篇
  2014年   86篇
  2013年   123篇
  2012年   158篇
  2011年   166篇
  2010年   97篇
  2009年   80篇
  2008年   144篇
  2007年   110篇
  2006年   87篇
  2005年   90篇
  2004年   87篇
  2003年   84篇
  2002年   69篇
  2001年   64篇
  2000年   76篇
  1999年   62篇
  1998年   33篇
  1997年   23篇
  1996年   33篇
  1995年   30篇
  1994年   26篇
  1993年   28篇
  1992年   46篇
  1991年   47篇
  1990年   51篇
  1989年   58篇
  1988年   52篇
  1987年   56篇
  1986年   39篇
  1985年   46篇
  1984年   46篇
  1983年   32篇
  1982年   26篇
  1981年   32篇
  1979年   50篇
  1978年   26篇
  1976年   21篇
  1975年   17篇
  1974年   17篇
  1973年   25篇
  1972年   18篇
  1971年   20篇
排序方式: 共有2961条查询结果,搜索用时 0 毫秒
951.
A 3-amino-4-substituted pyrrolidine series of dipeptidyl peptidase IV (DPP-4) inhibitors was rapidly developed into a candidate series by identification of a polar valerolactam replacement for the lipophilic 2,4,5-trifluorophenyl pharmacophore. The addition of a gem-difluoro substituent to the lactam improved overall DPP-4 inhibition and an efficient asymmetric route to 3,4-diaminopyrrolidines was developed. Advanced profiling of a subset of analogs identified 5o with an acceptable human DPP-4 inhibition profile based on a rat PK/PD model and a projected human dose that was suitable for clinical development.  相似文献   
952.
By careful analysis of experimental X-ray ligand crystallographic protein data across several inhibitor series we have discovered a novel, potent and selective series of iNOS inhibitors exemplified by compound 8.  相似文献   
953.
mTOR is part of the PI3K/AKT pathway and is a central regulator of cell growth and survival. Since many cancers display mutations linked to the mTOR signaling pathway, mTOR has emerged as an important target for oncology therapy. Herein, we report the discovery of triazine benzimidazole inhibitors that inhibit mTOR kinase activity with up to 200-fold selectivity over the structurally homologous kinase PI3Kα. When tested in a panel of cancer cell lines displaying various mutations, a selective inhibitor from this series inhibited cellular proliferation with a mean IC50 of 0.41 μM. Lead compound 42 demonstrated up to 83% inhibition of mTOR substrate phosphorylation in a murine pharmacodynamic model.  相似文献   
954.
Mass-directed isolation of the CH2Cl2/CH3OH extract from a marine sponge of the genus Pseudoceratina resulted in the purification of a new antimalarial bromotyrosine alkaloid, psammaplysin H (1), along with the previously isolated analogs psammaplysins G (2) and F (3). The structure of 1 was elucidated following 1D and 2D NMR, and MS data analysis. All compounds were tested in vitro against the 3D7 line of Plasmodium falciparum and mammalian cell lines (HEK293 and HepG2), with 1 having the most potent (IC50 0.41 μM) and selective (>97-fold) antimalarial activity.  相似文献   
955.
GlmU is a bifunctional enzyme that is essential for bacterial growth, converting D-glucosamine 1-phosphate into UDP-GlcNAc via acetylation and subsequent uridyl transfer. A biochemical screen of AstraZeneca's compound library using GlmU of Escherichia coli identified novel sulfonamide inhibitors of the acetyltransferase reaction. Steady-state kinetics, ligand-observe NMR, isothermal titration calorimetry, and x-ray crystallography showed that the inhibitors were competitive with acetyl-CoA substrate. Iterative chemistry efforts improved biochemical potency against gram-negative isozymes 300-fold and afforded antimicrobial activity against a strain of Haemophilus influenzae lacking its major efflux pump. Inhibition of precursor incorporation into bacterial macromolecules was consistent with the antimicrobial activity being caused by disruption of peptidoglycan and fatty acid biosyntheses. Isolation and characterization of two different resistant mutant strains identified the GlmU acetyltransferase domain as the molecular target. These data, along with x-ray co-crystal structures, confirmed the binding mode of the inhibitors and explained their relative lack of potency against gram-positive GlmU isozymes. This is the first example of antimicrobial compounds mediating their growth inhibitory effects specifically via GlmU.  相似文献   
956.
NKCC1 and KCC2, related cation-chloride cotransporters (CCC), regulate cell volume and γ-aminobutyric acid (GABA)-ergic neurotranmission by modulating the intracellular concentration of chloride [Cl(-)]. These CCCs are oppositely regulated by serine-threonine phosphorylation, which activates NKCC1 but inhibits KCC2. The kinase(s) that performs this function in the nervous system are not known with certainty. WNK1 and WNK4, members of the WNK (with no lysine [K]) kinase family, either directly or via the downstream SPAK/OSR1 Ste20-type kinases, regulate the furosemide-sensitive NKCC2 and the thiazide-sensitive NCC, kidney-specific CCCs. What role the novel WNK2 kinase plays in this regulatory cascade, if any, is unknown. Here, we show that WNK2, unlike other WNKs, is not expressed in kidney; rather, it is a neuron-enriched kinase primarily expressed in neocortical pyramidal cells, thalamic relay cells, and cerebellar granule and Purkinje cells in both the developing and adult brain. Bumetanide-sensitive and Cl(-)-dependent (86)Rb(+) uptake assays in Xenopus laevis oocytes revealed that WNK2 promotes Cl(-) accumulation by reciprocally activating NKCC1 and inhibiting KCC2 in a kinase-dependent manner, effectively bypassing normal tonicity requirements for cotransporter regulation. TiO(2) enrichment and tandem mass spectrometry studies demonstrate WNK2 forms a protein complex in the mammalian brain with SPAK, a known phosphoregulator of NKCC1. In this complex, SPAK is phosphorylated at Ser-383, a consensus WNK recognition site. These findings suggest a role for WNK2 in the regulation of CCCs in the mammalian brain, with implications for both cell volume regulation and/or GABAergic signaling.  相似文献   
957.
The protozoan parasite Leishmania is the causative agent of serious human infections worldwide. The parasites alternate between insect and vertebrate hosts and cause disease by invading macrophages, where they replicate. Parasites lacking the ferrous iron transporter LIT1 cannot grow intracellularly, indicating that a plasma membrane-associated mechanism for iron uptake is essential for the establishment of infections. Here, we identify and functionally characterize a second member of the Leishmania iron acquisition pathway, the ferric iron reductase LFR1. The LFR1 gene is up-regulated under iron deprivation and accounts for all the detectable ferric reductase activity exposed on the surface of Leishmania amazonensis. LFR1 null mutants grow normally as promastigote insect stages but are defective in differentiation into the vertebrate infective forms, metacyclic promastigotes and amastigotes. LFR1 overexpression partially restores the abnormal morphology of infective stages but markedly reduces parasite viability, precluding its ability to rescue LFR1 null replication in macrophages. However, LFR1 overexpression is not toxic for amastigotes lacking the ferrous iron transporter LIT1 and rescues their growth defect. In addition, the intracellular growth of both LFR1 and LIT1 null parasites is rescued in macrophages loaded with exogenous iron. This indicates that the Fe(3+) reductase LFR1 functions upstream of LIT1 and suggests that LFR1 overexpression results in excessive Fe(2+) production, which impairs parasite viability after intracellular transport by LIT1.  相似文献   
958.
People with diabetes suffer from early accelerated atherosclerosis, which contributes to morbidity and mortality from myocardial infarction, stroke, and peripheral vascular disease. Atherosclerosis is thought to initiate at sites of endothelial cell injury. Hyperglycemia, a hallmark of diabetes, leads to non-enzymatic glycosylation (or glycation) of extracellular matrix proteins. Glycated collagen alters endothelial cell function and could be an important factor in atherosclerotic plaque development. This study examined the effect of collagen glycation on endothelial cell response to fluid shear stress. Porcine aortic endothelial cells were grown on native or glycated collagen and exposed to shear stress using an in vitro parallel plate system. Cells on native collagen elongated and aligned in the flow direction after 24 h of 20 dynes/cm(2) shear stress, as indicated by a 13% decrease in actin fiber angle distribution standard deviation. However, cells on glycated collagen did not align. Shear stress-mediated nitric oxide release by cells on glycated collagen was half that of cells on native collagen, which correlated with decreased endothelial nitric oxide synthase (eNOS) phosphorylation. Glycated collagen likely inhibited cell shear stress response through altered cell-matrix interactions, since glycated collagen attenuated focal adhesion kinase activation with shear stress. When focal adhesion kinase was pharmacologically blocked in cells on native collagen, eNOS phosphorylation with flow was reduced in a manner similar to that of glycated collagen. These detrimental effects of glycated collagen on endothelial cell response to shear stress may be an important contributor to accelerated atherosclerosis in people with diabetes.  相似文献   
959.
Adipose triglyceride lipase (ATGL) catalyzes the first step of triacylglycerol hydrolysis in adipocytes. Abhydrolase domain 5 (ABHD5) increases ATGL activity by an unknown mechanism. Prior studies have suggested that the expression of ABHD5 is limiting for lipolysis in adipocytes, as addition of recombinant ABHD5 increases in vitro TAG hydrolase activity of adipocyte lysates. To test this hypothesis in vivo, we generated transgenic mice that express 6-fold higher ABHD5 in adipose tissue relative to wild-type (WT) mice. In vivo lipolysis increased to a similar extent in ABHD5 transgenic and WT mice following an overnight fast or injection of either a β-adrenergic receptor agonist or lipopolysaccharide. Similarly, basal and β-adrenergic-stimulated lipolysis was comparable in adipocytes isolated from ABHD5 transgenic and WT mice. Although ABHD5 expression was elevated in thioglycolate-elicited macrophages from ABHD5 transgenic mice, Toll-like receptor 4 (TLR4) signaling was comparable in macrophages isolated from ABHD5 transgenic and WT mice. Overexpression of ABHD5 did not prevent the development of obesity in mice fed a high-fat diet, as shown by comparison of body weight, body fat percentage, and adipocyte hypertrophy of ABHD5 transgenic to WT mice. The expression of ABHD5 in mouse adipose tissue is not limiting for either basal or stimulated lipolysis.  相似文献   
960.
Procapsid assembly is a process whereby hundreds of copies of a major capsid protein assemble into an icosahedral protein shell into which the viral genome is packaged. The essential features of procapsid assembly are conserved in both eukaryotic and prokaryotic complex double-stranded DNA viruses. Typically, a portal protein nucleates the co-polymerization of an internal scaffolding protein and the major capsid protein into an icosahedral capsid shell. The scaffolding proteins are essential to procapsid assembly. Here, we describe the solution-based biophysical and functional characterization of the bacteriophage lambda (λ) scaffolding protein gpNu3. The purified protein possesses significant α-helical structure and appears to be partially disordered. Thermally induced denaturation studies indicate that secondary structures are lost in a cooperative, apparent two-state transition (Tm = 40.6 ± 0.3 °C) and that unfolding is, at least in part, reversible. Analysis of the purified protein by size-exclusion chromatography suggests that gpNu3 is highly asymmetric, which contributes to an abnormally large Stokes radius. The size-exclusion chromatography data further indicate that the protein self-associates in a concentration-dependent manner. This was confirmed by analytical ultracentrifugation studies, which reveal a monomer-dimer equilibrium (Kd,app ~ 50 μM) and an asymmetric protein structure at biologically relevant concentrations. Purified gpNu3 promotes the polymerization of gpE, the λ major capsid protein, into virus-like particles that possess a native-like procapsid morphology. The relevance of this work with respect to procapsid assembly in the complex double-stranded DNA viruses is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号