首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   6篇
  60篇
  2023年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   8篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   2篇
  1982年   2篇
  1977年   2篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
11.
We describe an open-source kPAL package that facilitates an alignment-free assessment of the quality and comparability of sequencing datasets by analyzing k-mer frequencies. We show that kPAL can detect technical artefacts such as high duplication rates, library chimeras, contamination and differences in library preparation protocols. kPAL also successfully captures the complexity and diversity of microbiomes and provides a powerful means to study changes in microbial communities. Together, these features make kPAL an attractive and broadly applicable tool to determine the quality and comparability of sequence libraries even in the absence of a reference sequence. kPAL is freely available at https://github.com/LUMC/kPAL.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0555-3) contains supplementary material, which is available to authorized users.  相似文献   
12.
In triple-negative breast cancer (TNBC), the pleiotropic NDRG1 (N-Myc downstream regulated gene 1) promotes progression and worse survival, yet contradictory results were documented, and the mechanisms remain unknown. Phosphorylation and localization could drive NDRG1 pleiotropy, nonetheless, their role in TNBC progression and clinical outcome was not investigated. We found enhanced p-NDRG1 (Thr346) by TGFβ1 and explored whether it drives NDRG1 pleiotropy and TNBC progression. In tissue microarrays of 81 TNBC patients, we identified that staining and localization of NDRG1 and p-NDRG1 (Thr346) are biomarkers and risk factors associated with shorter overall survival. We found that TGFβ1 leads NDRG1, downstream of GSK3β, and upstream of NF-κB, to differentially regulate migration, invasion, epithelial-mesenchymal transition, tumor initiation, and maintenance of different populations of cancer stem cells (CSCs), depending on the progression stage of tumor cells, and the combination of TGFβ and GSK3β inhibitors impaired CSCs. The present study revealed the striking importance to assess both total NDRG1 and p-NDRG1 (Thr346) positiveness and subcellular localization to evaluate patient prognosis and their stratification. NDRG1 pleiotropy is driven by TGFβ to differentially promote metastasis and/or maintenance of CSCs at different stages of tumor progression, which could be abrogated by the inhibition of TGFβ and GSK3β.  相似文献   
13.
The cellular prion protein (PrPC) is a membrane-bound glycoprotein especially abundant in the central nervous system (CNS). The scrapie prion protein (PrPSc, also termed prions) is responsible of transmissible spongiform encephalopathies (TSE), a group of neurodegenerative diseases which affect humans and other mammal species, although the presence of PrPC is needed for the establishment and further evolution of prions.The present work compares the expression and localization of PrPC between healthy human brains and those suffering from Alzheimer disease (AD).In both situations we have observed a rostrocaudal decrease in the amount of PrPC within the CNS, both by immunoblotting and immunohistochemistry techniques. PrPC is higher expressed in our control brains than in AD cases. There was a neuronal loss and astogliosis in our AD cases. There was a tendency of a lesser expression of PrPC in AD cases than in healthy ones. And in AD cases, the intensity of the expression of the unglycosylated band is higher than the di- and monoglycosylated bands.With regards to amyloid plaques, those present in AD cases were positively labeled for PrPC, a result which is further supported by the presence of PrPC in the amyloid plaques of a transgenic line of mice mimicking AD.The work was done according to Helsinki Declaration of 1975, and approved by the Ethics Committee of the Faculty of Medicine of the University of Navarre.Key words: cellular prion protein, Alzheimer disease, transgenic mice  相似文献   
14.
15.
WhileEscherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains ofE. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. EnterotoxigenicE. coli (ETEC) is the most extensively studied of the five categories ofE. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenicE. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three, additional categories ofE. coli diarrheal disease, their colonization factors and their host cell receptors are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and thatE. coli is part of these biofilms as both commensals and pathogens.Abbreviations CF colonization factor - CFA Colonization Factor Antigen - CS coli-surface-associated antigen - EAggEC enteroaggregativeE. coli - ECDD E. coli diarrheal disease - EHEC enterohemorrhagicE. coli - EIEC enteroinvasiveE. coli - EPEC enteropathogenicE. coli - ETEC enterotoxigenicE. coli - Gal galactose - GalNAc N-acetyl galactosamine - LT heat-labile toxin - NeuAc N-acetyl neuraminic acid - PCF Putative colonization factor - RBC red blood cells - SLT Shiga-like toxin - ST heat-stable toxin  相似文献   
16.
A method for the rapid incorporation of cytochrome c oxidase into membranes has been developed. This method essentially consists of obtaining a preparation of the enzyme in which it is isolated and then dissolving it in a medium containing 0.5% of the detergent Tween 20, which gives a final concentration of 0.0125% after reconstitution. These studies revealed an optimal ratio of 1 microgram of enzyme to 5 mg of phospholipids. A similar optimal ratio was found when the amount of protein was varied. The optimum temperature was found to be 30 degrees C. Without a peak value being reached, it was found that the best reconstitution was obtained at pH 7.0-8.0. When measurements were performed either with a fluorescent cyanine (DiSC3) or by the uptake of tetraphenylphosphonium, it was found that the enzyme, with cytochrome c added to the outside, was capable of generating a membrane potential that was negative inside. Using the same procedure, the enzyme could also be reconstituted into vesicles of yeast plasma membrane. The procedure, then, seems adequate for incorporating cytochrome c oxidase into different kinds of membrane vesicles.  相似文献   
17.
Debaryomyces hansenii was grown in YPD medium without or with 1.0 M NaCl or KCl. Respiration was higher with salt, but decreased if it was present during incubation. However, carbonylcyanide-3-chlorophenylhydrazone (CCCP) markedly increased respiration when salt was present during incubation. Salt also stimulated proton pumping that was partially inhibited by CCCP; this uncoupling of proton pumping may contribute to the increased respiratory rate. The ADP increase produced by CCCP in cells grown in NaCl was similar to that observed in cells incubated with or without salts. The alternative oxidase is not involved. Cells grown with salts showed increased levels of succinate and fumarate, and a decrease in isocitrate and malate. Undetectable levels of citrate and low-glutamate dehydrogenase activity were present only in NaCl cells. Both isocitrate dehydrogenase decreased, and isocitrate lyase and malate synthase increased. Glyoxylate did not increase, indicating an active metabolism of this intermediary. Higher phosphate levels were also found in the cells grown in salt. An activation of the glyoxylate cycle results from the salt stress, as well as an increased respiratory capacity, when cells are grown with salt, and a 'coupling' effect on respiration when incubated in the presence of salt.  相似文献   
18.

Background  

Understanding evolutionary processes that drive genome reduction requires determining the tempo (rate) and the mode (size and types of deletions) of gene losses. In this study, we analysed five endosymbiotic genome sequences of the gamma-proteobacteria (three different Buchnera aphidicola strains, Wigglesworthia glossinidia, Blochmannia floridanus) to test if gene loss could be driven by the selective importance of genes. We used a parsimony method to reconstruct a minimal ancestral genome of insect endosymbionts and quantified gene loss along the branches of the phylogenetic tree. To evaluate the selective or functional importance of genes, we used a parameter that measures the level of adaptive codon bias in E. coli (i.e. codon adaptive index, or CAI), and also estimates of evolutionary rates (Ka) between pairs of orthologs either in free-living bacteria or in pairs of symbionts.  相似文献   
19.
20.
Galbeta1-3GalNAc (T-disaccharide) and related molecules were assayed to describe the structural requirements of carbohydrates to bind Agaricus bisporus lectin (ABL). Results provide insight into the most relevant regions of T-disaccharide involved in the binding of ABL. It was found that monosaccharides bind ABL weakly indicating a more extended carbohydrate-binding site as compared to those involvedin the T- disaccharide specific lectins such as jacalin and peanut agglutinin. Lacto-N-biose (Galbeta1-3GlcNAc) unlike T-disaccharide, is unable to inhibit the ABL interaction, thus showing the great importance of the position of the axial C-4 hydroxyl group of GalNAc in T-disaccharide. This finding could explain the inhibitory ability of Galbeta1-6GlcNAc and lactose because C-4 and C-3 hydroxyl groups of reducing Glc, respectively, occupy a similar position as reported by conformational analysis. From the comparison of different glycolipids bearing terminal T-disaccharide bound to different linkages, it can be seen than ABL binding is even more impaired by an adjacent C-6 residual position than by the anomeric influence of T-disaccharide. Furthermore, the addition of beta-GlcNAc to the terminal T-disaccharide in C-3 position of Gal does not affect the ABL binding whereas if an anionic group such as glucuronic acid is added to C-3, the binding is partially affected. These findings demonstrate that ABL holds a particular binding nature different from that of other T-disaccharide specific lectins.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号