首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   28篇
  215篇
  2019年   2篇
  2017年   3篇
  2015年   2篇
  2014年   4篇
  2013年   25篇
  2012年   2篇
  2011年   10篇
  2010年   2篇
  2009年   7篇
  2008年   4篇
  2007年   7篇
  2006年   6篇
  2005年   12篇
  2004年   6篇
  2003年   3篇
  2002年   6篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   7篇
  1994年   2篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   4篇
  1971年   2篇
  1915年   2篇
  1897年   2篇
  1888年   1篇
  1887年   1篇
  1883年   3篇
  1882年   5篇
  1881年   2篇
  1880年   1篇
  1879年   6篇
  1878年   2篇
  1877年   2篇
  1876年   1篇
排序方式: 共有215条查询结果,搜索用时 11 毫秒
11.
Preparations that contain well-spread metaphase chromosomes are critical for plant cytogenetic analyses including chromosome counts, banding procedures, in situ hybridization, karyotyping and construction of ideograms. Chromosome spreading is difficult for plants with large and numerous chromosomes. We report here a technique for obtaining cytoplasm-free, well-spread metaphases from two Amaryllidaceae species: Sprekelia formosissima (2n = 120) and Hymenocallis howardii (2n = 96). The technique has three main steps: 1) pretreatment to cause chromosome condensation, 2) dripping onto tilted slides coated with a thin layer of pure acetic acid and 3) application of steam and acetic acid to produce cytoplasmic hydrolysis, which spreads the chromosomes.  相似文献   
12.
Treatment of cardiac or skeletal muscle sarcoplasmic reticulum vesicles with 0.1 M sodium carbonate selectively extracts both the Ca2+-binding protein calsequestrin and the two "intrinsic glycoproteins," while leaving the Ca2+-dependent ATPase membrane bound. Phenyl-Sepharose chromatography in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and high salt (0.5 M NaCl) readily fractionates these solubilized proteins into a Ca2+-elutable fraction, which contains purified calsequestrin, and a low ionic strength elutable fraction, which contains one of the two intrinsic glycoproteins. Elution of calsequestrin from phenyl-Sepharose occurs near 1 mM Ca2+. Copurifying with calsequestrin are an homologous set of high molecular weight proteins, which like calsequestrin stain blue with Stains-All. These proteins are present in trace amounts and do not correspond to any sarcoplasmic reticulum proteins previously identified. Elution of calsequestrin from phenyl-Sepharose is consistent with the Ca2+-binding protein losing its hydrophobic character in the presence of millimolar Ca2+. This behavior is converse to that observed for several calmodulin-like proteins, which are eluted from hydrophobic gels in the presence of EGTA. The high yield and purity of calsequestrin prepared by this method makes possible a unique system for studying what may be a distinct class of Ca2+-binding proteins.  相似文献   
13.
After osmotic perturbation, the red blood cells of Amphiuma exhibited a volume-regulatory response that returned cell volume back to or toward control values. After osmotic swelling, cell-volume regulation (regulatory volume decrease; RVD) resulted from net cellular loss of K, Cl, and osmotically obliged H2O. In contrast, the volume-regulatory response to osmotic shrinkage (regulatory volume increase; RVI) was characterized by net cellular uptake of Na, Cl, and H2O. The net K and Na fluxes characteristic of RVD and RVI are increased by 1-2 orders of magnitude above those observed in studies of volume-static control cells. The cell membrane potential of volume-regulating and volume-static cells was measured by impalement with glass microelectrodes. The information gained from the electrical and ion-flux studies led to the conclusion that the ion fluxes responsible for cell-volume regulation proceed via electrically silent pathways. Furthermore, it was observed that Na fluxes during RVI were profoundly sensitive to medium [HCO3] and that during RVI the medium becomes more acid, whereas alkaline shifts in the suspension medium accompany RVD. The experimental observations are explained by a model featuring obligatorily coupled alkali metal-H and Cl-HCO3 exchangers. The anion- and cation-exchange pathways are separate and distinct yet functionally coupled via the net flux of H. As a result of the operation of such pathways, net alkali metal, Cl, and H2O fluxes proceed in the same direction, whereas H and HCO3 fluxes are cyclic. Data also are presented that suggest that the ion-flux pathways responsible for cell-volume regulation are not activated by changes in cell volume per se but by some event associated with osmotic perturbation, such as changes in intracellular pH.  相似文献   
14.
The cDNAencoding theNa+/H+exchanger (NHE) from Amphiumaerythrocytes was cloned, sequenced, and found to be highly homologous to the human NHE1 isoform (hNHE1), with 79% identity and 89%similarity at the amino acid level. Sequence comparisons with otherNHEs indicate that the Amphiumatridactylum NHE isoform 1 (atNHE1) islikely to be a phylogenetic progenitor of mammalian NHE1. The atNHE1protein, when stably transfected into the NHE-deficient AP-1 cell line(37), demonstrates robustNa+-dependent proton transportthat is sensitive to amiloride but not to the potent NHE1 inhibitorHOE-694. Interestingly, chimeric NHE proteins constructed by exchangingthe amino and carboxy termini between atNHE1 and hNHE1 exhibited drugsensitivities similar to atNHE1. Based on kinetic, sequence, andfunctional similarities between atNHE1 and mammalian NHE1, we proposethat the Amphiuma exchanger shouldprove to be a valuable model for studying the control of pH and volumeregulation of mammalian NHE1. However, low sensitivity of atNHE1 to theNHE inhibitor HOE-694 in both nativeAmphiuma red blood cells (RBCs) and intransfected mammalian cells distinguishes this transporter from itsmammalian homologue.  相似文献   
15.
The aim of this paper was to evaluate the ocular findings in patients with chronic renal failure (CRF) undergoing haemodialysis (HD). In 64 patients undergoing haemodialysis (30 female and 34 male), aged 24-83 years (mean 58 years) on haemodialysis 1-213 months (mean 47 months) complete ocular examination were performed: visual acuity (VA), intraocular pressure (IOP), biomicroscopic examination and fundoscopy. On right eye sixty-nine percent of patents had VA 0.6 or better, and on left eye 84% of patients had VA 0.6 or better. Mean IOP before dialysis was 15 mmHg and after dialysis was 14 mmHg. In 9 patients (14%) we found corneo-conjunctival calcium deposits. No correlation of ocular calcification and parathyroid hormone (PTH) level or calcium and phosphate product were observed. 39 (60%) patients had cataract. Hypertensive vascular changes were seen in 44 (68%) patients and in 6 (7%) patients age-related macular degeneration. Seven patients had diabetes mellitus and in 5 diabetic retinopathy was observed. Patients with CRF or who are receiving HD represent unique group of patients. Pathologic change could be found in many tissue and organs, therefore we suggest ocular examination more frequently in dialysis patients.  相似文献   
16.
The ubiquitous Na+/H+ exchanger NHE1 is regulated by protein phosphorylation events, but the mechanisms involved are incompletely understood. We recently cloned NHE1 from the red blood cells of the winter flounder, Pleuronectes americanus (paNHE1), and demonstrated its activation by osmotic cell shrinkage, β-adrenergic stimuli, and the Ser/Thr protein phosphatase PP1 and PP2A inhibitor calyculin A (CLA) (Pedersen et al. [2003] Am. J. Physiol. 284, C1561–C1576). Here, we investigate the mechanisms involved in paNHE1 activation by these stimuli. Osmotic shrinkage and CLA were only partially additive in their effects on paNHE1 activity, and CLA-mediated paNHE1 activation was inhibited by osmotic cell swelling. Activation by the β-adrenergic agonist isoproterenol (IP) was fully additive to activation by osmotic shrinkage or CLA. IP-mediated, but neither shrinkage-nor CLA-mediated paNHE1 activation were associated with an increase in cellular cyclic adenosine monophosphate (cAMP) level. IP-mediated activation was partially blocked by the protein kinase A (PKA) inhibitor H89 (10μM), wherease shrinkage- and CLA-mediated activation were unaffected. All three stimuli activated paNHE1 in a manner unaffected by inhibitors of protein kinase C (calphostin C, 5 μM) and protein kinase G (KT5823, 10 μM) as well as of myosin light chain kinase (ML-7, 10 μM). IP-mediated, but not shrinkage-mediated, paNHE1 activation was associated with an increase in serine phosphorylation of the paNHE1 protein. It is suggested that paNHE1 activation by osmotic shrinkage and by PP1/PP2A inhibition involves partially convergent signaling pathways, whereas activation of paNHE1 by β-adrenergic stimuli is mediated by a separate pathway.  相似文献   
17.
The incidence of the sewage fly, Psychoda alternata Say, breeding almost free from other insect competitors in a bacteria bed at Huddersfield is examined. Its general seasonal trend is marked by periods of peak output explained on the theory that there are two successions of generations running persistently and alternating with one another. Such behaviour has previously been demonstrated for another sewage fly, Spaniotoma minima , and has been shown to be instituted by irregular temperatures in autumn and spring. In Psychoda alternata a special type of intraspecific competition is set-up in the warmer months when the cycles are rapid, for the larvae of one succession must start life in a bed just depleted of food by the other. Therefore large and small outbursts of the fly tend to alternate. The discharges of solids from the bed have a detailed periodicity corresponding to the alternations in the successions of the fly.  相似文献   
18.
19.
Maintenance of a stable cell volume and intracellular pH is critical for normal cell function. Arguably, two of the most important ion transporters involved in these processes are the Na+/H+ exchanger isoform 1 (NHE1) and Na+ -K+ -2Cl- cotransporter isoform 1 (NKCC1). Both NHE1 and NKCC1 are stimulated by cell shrinkage and by numerous other stimuli, including a wide range of hormones and growth factors, and for NHE1, intracellular acidification. Both transporters can be important regulators of cell volume, yet their activity also, directly or indirectly, affects the intracellular concentrations of Na+, Ca2+, Cl-, K+, and H+. Conversely, when either transporter responds to a stimulus other than cell shrinkage and when the driving force is directed to promote Na+ entry, one consequence may be cell swelling. Thus stimulation of NHE1 and/or NKCC1 by a deviation from homeostasis of a given parameter may regulate that parameter at the expense of compromising others, a coupling that may contribute to irreversible cell damage in a number of pathophysiological conditions. This review addresses the roles of NHE1 and NKCC1 in the cellular responses to physiological and pathophysiological stress. The aim is to provide a comprehensive overview of the mechanisms and consequences of stress-induced stimulation of these transporters with focus on the heart, brain, and blood. The physiological stressors reviewed are metabolic/exercise stress, osmotic stress, and mechanical stress, conditions in which NHE1 and NKCC1 play important physiological roles. With respect to pathophysiology, the focus is on ischemia and severe hypoxia where the roles of NHE1 and NKCC1 have been widely studied yet remain controversial and incompletely elucidated.  相似文献   
20.
In junctional sarcoplasmic reticulum, binding to cardiac triadin-1 provides a mechanism by which the Ca(2+)-release channel/ryanodine receptor may link with calsequestrin to regulate Ca(2+) release. Calsequestrin and triadin-1 both contain N-linked glycans, but about half of triadin-1 in the heart remains unglycosylated. To investigate mechanisms for this incomplete glycosylation, we overexpressed triadin-1 as a series of glycoform variants in non-muscle cell lines and neonatal heart cells using plasmid and adenoviral vectors. We showed that the characteristic incomplete glycosylation stemmed from properties of the glycosylation sequence that are conserved among triadin splice variants, including the close proximity of Asn(75) to the sarcoplasmic reticulum inner membrane. Although triadin-1 appeared by SDS-PAGE analysis as a 35/40-kDa doublet in all cells, variations occurred in the relative levels of the two glycoforms depending on the cell type and whether overexpression involved a plasmid or adenoviral vector. Treatment of triadin-1 with the proteasome inhibitor MG-132 led to striking changes in the relative levels of triadin-1 that indicated active breakdown of unglycosylated, but not glycosylated, triadin-1. Besides substantial increases in the relative levels of unglycosylated triadin-1, proteasome inhibition led to an accumulation of two new modified forms of triadin-1 that were seen with triadin-1 only when it is not glycosylated on Asn(75). Effects of tunicamycin and endoglycosidase H confirmed that these novel isoforms represent two alternative N-linked glycosylation sites, indicating that an alternative topology occurs infrequently leading to yet other glycoforms with short half-lives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号