首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   5篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2016年   4篇
  2015年   2篇
  2014年   8篇
  2013年   9篇
  2012年   13篇
  2011年   12篇
  2010年   7篇
  2009年   6篇
  2008年   12篇
  2007年   13篇
  2006年   7篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
排序方式: 共有154条查询结果,搜索用时 841 毫秒
81.
A comprehensive study that compared acoustic rhinometry (AR) data to computed tomography (CT) data was performed to evaluate the accuracy of AR measurements in estimating nasal passage area and to assess its ability of quantifying paranasal sinus volume and ostium size in live humans. Twenty nasal passages of 10 healthy adults were examined by using AR and CT. Actual cross-sectional areas of the nasal cavity, sinus ostia sizes, and maxillary and frontal sinus volumes were determined from CT sections perpendicular to the curved acoustic axis of the nasal passage. Nasal cavity volume (from nostril to choana) calculated from the AR-derived area-distance curve was compared with that from the CT-derived area-distance curve. AR measurements were also done on pipe models that featured a side branch (Helmholtz resonator of constant volume but two different neck diameters) simulating a paranasal sinus. In the anterior nasal cavity, there was good agreement between the cross-sectional areas determined by AR and CT. However, posterior to the sinus ostia, AR overestimated cross-sectional area. The difference between AR nasal volume and CT nasal volume was much smaller than the combined volume of the maxillary and frontal sinuses. The results suggest that AR measurements of the healthy adult nasal cavity are reasonably accurate to the level of the paranasal sinus ostia. Beyond this point, AR overestimates cross-sectional area and provides no quantitative data for sinus volume or ostium size. The effects of paranasal sinuses and acoustic resonances in the nasal cavity are not accounted for in the present AR algorithms.  相似文献   
82.
A greenhouse experiment was carried out to study the severity of phosphorus (P) deficiency symptoms on leaves, shoot dry matter production, and shoot concentration and content (the total amount per shoot) of P in 39 bread wheat (Triticum aestivum L.) and 34 durum wheat (Triticum durum L.) genotypes grown in a severely P-deficient calcareous soil with low (20mgPkg−1 soil) and adequate (80mgPkg−1 soil) P supply for 39 days. As the seed P concentration or content can affect plant performance under P-deficient conditions, the seeds of the genotypes used in the present study were also analyzed for P concentration. Phosphorus efficiency (relative shoot growth) of genotypes, calculated by the ratio of shoot dry matter production under low P to that under adequate P supply, significantly differed among the genotypes, and varied between 46.7% and 78.6%. Phosphorus efficiency ranged from 51% to 71% with an average of 61% for bread and from 47% to 79% with an average of 66% for durum wheat genotypes. There was no correlation between P efficiency ratio and P concentration of plants (R 2=0.0001), but P efficiency of all bread and durum wheat genotypes showed a very significant correlation with the P content (the total amount of P per shoot) (R 2=0.333***). The relationship between the P efficiency and total amount of P per shoot was much more significant in bread (R 2=0.341***) than in durum wheat (R 2=0.135*). Like shoot P concentrations, also severity of visible leaf symptoms of P deficiency on older leaves, including leaf chlorosis and necrosis, did not correlate with P efficiency. In most cases, genotypes showing higher P efficiency had higher absolute shoot dry weight under P deficient conditions. Under P deficient conditions, the absolute shoot dry weight very significantly correlated with shoot P content (R 2=0.665***), but the correlation between the absolute shoot dry weight and shoot P concentration tended to be negative. There was also variation in native seed P reserve of the genotypes, but this variation had no influence on the P efficiency. The results indicate that the total amount of P per shoot and shoot dry matter production at low P supply are most reliable parameters in ranking genotypes for P efficiency at early growth stage. In wheat germplasm tested in the present study, several wheat genotypes are available showing both very high P efficiency and very high shoot content and concentration of P suggesting that P acquisition ability should be most important mechanism for high P efficiency in such genotypes. On the other hand, there are also genotypes in the germplasm having more or less same P concentration or P content in shoot but differing substantially in P efficiency, indicating importance of P utilization at cellular level in P efficiency. All these results suggest that P efficiency mechanisms can be different from one genotype to other within a given plant species.  相似文献   
83.
Hacisalihoglu  Gökhan  Ozturk  Levent  Cakmak  Ismail  Welch  Ross M.  Kochian  Leon 《Plant and Soil》2004,259(1-2):71-83
Plant and Soil - Greenhouse experiments have been carried out to study the genotypic variation among 35 bean (Phaseolus vulgaris&;nbsp;L.) genotypes with regards to tolerance to zinc (Zn)...  相似文献   
84.
Congenital radio-ulnar synostosis may be an isolated abnormality or additional abnormalities may accompany it. It may also be found as a part of well-known syndromes. We present a case with bilateral congenital radio-ulnar synostosis, speech delay, dimple on shoulders, café au lait spot and characteristic facial appearance. The proband has a brother with similar clinical findings with the exception of congenital radio-ulnar synostosis. We discuss the possible relationship between our case and previously described syndromes with congenital radio-ulnar synostosis, and distinct phenotypic features of the presented case.  相似文献   
85.
Iron (Fe) deficiency is increasingly being observed in cropping systems with frequent glyphosate applications. A likely reason for this is that glyphosate interferes with root uptake of Fe by inhibiting ferric reductase in roots required for Fe acquisition by dicot and nongrass species. This study investigated the role of drift rates of glyphosate (0.32, 0.95 or 1.89 mm glyphosate corresponding to 1, 3 and 6% of the recommended herbicidal dose, respectively) on ferric reductase activity of sunflower (Helianthus annuus) roots grown under Fe deficiency conditions. Application of 1.89 mm glyphosate resulted in almost 50% inhibition of ferric reductase within 6 h and complete inhibition 24 h after the treatment. Even at lower rates of glyphosate (e.g. 0.32 mm and 0.95 mm), ferric reductase was inhibited. Soluble sugar concentration and the NAD(P)H oxidizing capacity of apical roots were not decreased by the glyphosate applications. To our knowledge, this is the first study reporting the effects of glyphosate on ferric reductase activity. The nature of the inhibitory effect of glyphosate on ferric reductase could not be identified. Impaired ferric reductase could be a major reason for the increasingly observed Fe deficiency in cropping systems associated with widespread glyphosate usage.  相似文献   
86.
Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl20 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer.  相似文献   
87.
An adaptive neuro-fuzzy inference technique has been adopted to estimate light levels in a reservoir. The data were collected randomly from Doğanci Dam Reservoir over a number of years. The input data set is a matrix with vectors of time, depth, sampling location, and incident solar radiation. The output data set is a vector representing light measured at various depths. Randomization and logarithmic transformations have been applied as preprocessing. One-half of the data have been utilized for training; testing and validation steps utilized one-fourth each. An adaptive neuro-fuzzy inference system (ANFIS) has been built as a prediction model for light penetration. Very high correlation values between predictions and real values on light measurements with relatively low root mean square error values have been obtained for training, test, and validation data sets. Elimination of the overtraining problem was ensured by satisfying close root mean square error values for all sets.  相似文献   
88.
Cakmak  I.  Cakmak  O.  Eker  S.  Ozdemir  A.  Watanabe  N.  Braun  H.J. 《Plant and Soil》1999,215(2):203-209
The effect of varied zinc (Zn) supply on shoot and root dry matter production, severity of Zn deficiency symptoms and Zn tissue concentrations was studied in two Triticum turgidum (BBAA) genotypes and three synthetic hexaploid wheat genotypes by growing plants in a Zn-deficient calcareous soil under greenhouse conditions with (+Zn=5 mg kg-1 soil) and without (−Zn) Zn supply. Two synthetic wheats (BBAADD) were derived from two different Aegilops tauschii (DD) accessions using same Triticum turgidum (BBAA), while one synthetic wheat (BBAAAA) was derived from Triticum turgidum (BBAA) and Triticum monococcum (AA). Visible symptoms of Zn deficiency, such as occurrence of necrotic patches on leaves and reduction in shoot elongation developed more rapidly and severely in tetraploid wheats than in synthetic hexaploid wheats. Correspondingly, decreases in shoot and root dry matter production due to Zn deficiency were higher in tetraploid wheats than in synthetic hexaploid wheats. Transfer of the DD genome from Aegilops tauschii or the AA genome from Triticum monococcum to tetraploid wheat greatly improved root and particularly shoot growth under Zn-deficient, but not under Zn-sufficient conditions. Better growth and lesser Zn deficiency symptoms in synthetic hexaploid wheats than in tetraploid wheats were not accompanied by increases in Zn concentration per unit dry weight, but related more to the total amount of Zn per shoot, especially in the case of synthetic wheats derived from Aegilops tauschii. This result indicates higher Zn uptake capacity of synthetic wheats. The results demonstrated that the genes for high Zn efficiency from Aegilops tauschii (DD) and Triticum monococcum (AA) are expressed in the synthetic hexaploid wheats. These wheat relatives can be used as valuable sources of genes for improvement of Zn efficiency in wheat. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
89.
Yazici  M. Atilla  Asif  Muhammad  Tutus  Yusuf  Ortas  Ibrahim  Ozturk  Levent  Lambers  Hans  Cakmak  Ismail 《Plant and Soil》2021,459(1-2):19-21
Plant and Soil - Grass pea is a legume species with recognized resistance to several diseases and thus important for the improvement of related major legume crops. It is infected by the soil-borne...  相似文献   
90.
Deficiencies of zinc (Zn) and iron (Fe) are global nutritional problems and caused most often by their limited dietary intake. Increasing Zn and Fe concentrations of staple food crops such as wheat is therefore an important global challenge. This study investigated the effects of varied nitrogen (N) and Zn supply on the total uptake, remobilization and partitioning of Zn, Fe and N in durum wheat throughout its ontogenesis. Plants were grown under greenhouse conditions with high or low supply of N and Zn, and harvested at 8 different developmental stages for analysis of Zn, Fe and N in leaves, stems, husks and grains. The results obtained showed that the Zn and Fe uptake per plant was enhanced up to 4-fold by high N supply while the increases in plant growth by high N supply were much less. When both the Zn and N supplies were high, approximately 50% of grain Zn and 80% of grain Fe were provided by post-anthesis shoot uptake, indicating that the contribution of remobilization to grain accumulation was higher for Zn than for Fe. At the high N and Zn application, about 60% of Zn, but only 40% of Fe initially stored in vegetative parts were retranslocated to grains, and nearly 80% of total shoot Zn and 60% of total shoot Fe were harvested with grains. All these values were significantly lower at the low N treatment. Results indicate that N nutrition is a critical factor in both the acquisition and grain allocation of Zn and Fe in wheat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号