首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106862篇
  免费   1643篇
  国内免费   3020篇
  111525篇
  2024年   63篇
  2023年   270篇
  2022年   658篇
  2021年   960篇
  2020年   748篇
  2019年   864篇
  2018年   12426篇
  2017年   11112篇
  2016年   8105篇
  2015年   1646篇
  2014年   1575篇
  2013年   1577篇
  2012年   5738篇
  2011年   14180篇
  2010年   12816篇
  2009年   8923篇
  2008年   10567篇
  2007年   11990篇
  2006年   829篇
  2005年   930篇
  2004年   1274篇
  2003年   1298篇
  2002年   977篇
  2001年   347篇
  2000年   258篇
  1999年   127篇
  1998年   87篇
  1997年   83篇
  1996年   62篇
  1995年   43篇
  1994年   45篇
  1993年   54篇
  1992年   51篇
  1991年   73篇
  1990年   30篇
  1989年   23篇
  1988年   30篇
  1987年   20篇
  1985年   19篇
  1984年   12篇
  1983年   19篇
  1982年   6篇
  1975年   6篇
  1972年   247篇
  1971年   274篇
  1965年   14篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The localized surface plasmon resonances of multilayered nanostructures are studied using finite difference time domain simulations and plasmon hybridization method. Concentric metal–dielectric–metal (MDM) structure with metal core and nanoshell separated by a thin dielectric layer exhibits a strong coupling between the core and nanoshell plasmon resonance modes. The coupled resonance mode wavelengths show dependence on the dielectric layer thickness and composition of core and outer layer metal. The aluminum-based MDM structures show lower plasmon wavelength compared with Ag- and Au-based MDM nanostructures. The calculated refractive index sensitivity (RIS) factor is in the order Ag–Air–Ag>Au–Air–Au>Al–Air–Al for monometallic multilayered nanostructures. Bimetallic multilayered nanostructures support strong and tunable plasmon resonance wavelengths as well as high RIS factor of 510 nm/refractive index unit (RIU) and 470 nm/RIU for Al–Air–Au and Ag-Air-Au, respectively. The MDM structures not only exhibit higher index sensitivity but also cover a wide ultraviolet–near-infrared wavelengths, making these structures very promising for index sensing, biomolecule sensing, and surface-enhanced Raman spectroscopy.  相似文献   
992.
A successful nerve regeneration process was achieved with nerve repair tubes made up of 1-ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) cross-linked carboxymethyl chitosan (CM-chitosan) with improved biodegradability. Chitosan has a very slow degradation rate, while the EDC cross-linked CM-chitosan tubes degraded to 30% of original weight during 8 weeks of incubation in lysozyme solution. In vitro cell culture indicated that the CM-chitosan films presented no cytotoxicity to Schwann cells. From in vivo studies using a 10 mm rat sciatic nerve defect model investigated by histomorphometry analysis, the average diameter of the fibers and the average thickness of myelin sheath in the CM-chitosan tubes were 3.7 ± 0.33 and 0.33 ± 0.04 μm, respectively, which demonstrated equivalence to nerve autografts (the current “gold” standard); furthermore, the average fiber density in the CM-chitosan tubes was 20.5 × 103/mm2, which was similar to that of autografts (21 × 103/mm2) and significantly higher than that of common chitosan tubes (15.3 × 103/mm2).  相似文献   
993.
Many evidences indicate that oxidative stress plays a significant role in a variety of human disease states, including neurodegenerative diseases. Iron is an essential metal for almost all living organisms due to its involvement in a large number of iron-containing proteins and enzymes, though it could be also toxic. Actually, free iron excess generates oxidative stress, particularly in brain, where anti-oxidative defences are relatively low. Its accumulation in specific regions is associated with pathogenesis in a variety of neurodegenerative diseases (i.e., Parkinson’s disease, Alzheimer’s disease, Huntington’s chorea, Amyotrophic Lateral Sclerosis and Neurodegeneration with Brain Iron Accumulation). Anyway, the extent of toxicity is dictated, in part, by the localization of the iron complex within the cell (cytosolic, lysosomal and mitochondrial), its biochemical form, i.e., ferritin or hemosiderin, as well as the ability of the cell to prevent the generation and propagation of free radical by the wide range of antioxidants and cytoprotective enzymes in the cell. Particularly, ferrous iron can act as a catalyst in the Fenton reaction that potentiates oxygen toxicity by generating a wide range of free radical species, including hydroxyl radicals (·OH). The observation that patients with neurodegenerative diseases show a dramatic increase in their brain iron content, correlated with the production of reactive oxigen species in these areas of the brain, conceivably suggests that disturbances in brain iron homeostasis may contribute to the pathogenesis of these disorders. The aim of this review is to describe the chemical features of iron in human beings and iron induced toxicity in neurodegenerative diseases. Furthermore, the attention is focused on metal chelating drugs therapeutic strategies.  相似文献   
994.
Macrolide antibiotics are lipophilic drugs with some limitations including low solubility, limited cellular permeation, patients discomfort, etc. With amphiphilic methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (MPEG-PCL) copolymer and azithromycin (AZT) as drug carrier and model drug, AZT-loaded micelles were prepared via thin-membrane hydration method in order to overcome these limitations. Encapsulation efficiency of AZT-loaded micelles was 94.40% with good storage stability for 28 days, and AZT’s water solubility was enhanced to 944 μg/mL. Fourier transform infrared spectrum and x-ray diffraction analysis indicated that AZT was enveloped into the micelles in amorphous form due to its interaction with the copolymer. AZT’s in vitro release from the AZT-loaded micelles demonstrated a slow and continuous behavior when compared with raw AZT. The release dynamics was accorded with Weibull equation, meaning that release amount of AZT lowered with time and was proportional to remaining amount of drug in the AZT-loaded micelles. Korsmeyer-Peppas fitting result suggested that drug release process was a classical Fickian diffusion-controlled manner. With Staphylococcus aureus as bacterial strain, antibacterial activity of the AZT-loaded micelles displayed was comparable with raw AZT. In conclusion, MPEG-PCL should be a promising carrier for macrolide antibiotic delivery in treatment of bacterial infections.  相似文献   
995.
The release of a potent bone-resorption inhibitor such as zoledronate from a versatile drug delivery system such as SBA 15 has been modeled. The initial and boundary conditions have been defined, together with the system parameters, including the determination of equilibrium and transport parameters. Additionally, the experimental model of the same system has been observed to validate the prediction here developed. This approach represents a powerful tool for the designing of mesoporous implantable drug delivery systems because their release kinetics can be predicted in advance, and this leads to a considerable time and resources saving.  相似文献   
996.
Although caspases have been demonstrated to be involved in artemisinin (ARTE)-induced apoptosis, their exact functions are not well understood. The aim of this report is to explore the roles of caspase-8, -9 and -3 during ARTE-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cells. ARTE treatment induces a rapid generation of reactive oxygen species (ROS), and ROS-dependent apoptosis as well as the activation of caspase-8, -9 and -3 via time- and dose-dependent fashion. Of upmost importance, inhibition of caspase-8 or -9, but not caspase-3, almost completely blocks the ARTE-induced not only activation of the caspase-8, -9 and -3 but also apoptosis. In addition, the apoptotic process triggered by ARTE does not involve the Bid cleavage, tBid translocation, significant loss of mitochondrial membrane potential and cytochrome c release from mitochondria. Moreover, silencing Bax/Bak does not prevent the ATRE-induced cell death as well as the activation of caspase-8, -9 and -3. Collectively, our data firstly demonstrate that ARTE triggers a ROS-mediated positive feedback amplification activation loop between caspase-8 and -9 independent of mitochondria, which dominantly mediated the ARTE-induced apoptosis via a caspase-3-independent apoptotic pathway in ASTC-a-1 cells. Our findings imply a potential to develop new derivatives from artemisinin to effectively initiate the amplification activation loop of caspases.  相似文献   
997.
998.
The successful isolation of phosphorene (atomic layer thick black phosphorus) in 2014 has currently aroused the interest of 2D material researchers. In this review, first, the fundamentals of phosphorus allotropes, phosphorene, and black phosphorus, are briefly introduced, along with their structures, properties, and synthesis methods. Second, the readers are presented with an overview of their energy applications. Particularly in electrochemical energy storage, the large interlayer spacing (0.53 nm) in phosphorene allows the intercalation/deintercalation of larger ions as compared to its graphene counterpart. Therefore, phosphorene may possess greater potential for high electrochemical performance. In addition, the status of lithium ion batteries as well as secondary sodium ion batteries is reviewed. Next, each application for energy generation, conversion, and storage is described in detail with milestones as well as the challenges. These emerging applications include supercapacitors, photovoltaic devices, water splitting, photocatalytic hydrogenation, oxygen evolution, and thermoelectric generators. Finally the fast‐growing dynamic field of phosphorene research is summarized and perspectives on future possibilities are presented calling on the efforts of chemists, physicists, and material scientists  相似文献   
999.
Different signaling pathways are implicated in proliferation and differentiation of stem cells. Bone Morphogenesis Pathway (BMP) signaling was known to display an important function in osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs). In the present study, the authors investigated whether blocking BMP signaling was associated with down regulation of Nestin expression as neural stem cell marker in peripheral blood derived mesenchymal stem cells (PB-MSCs). At first, MSCs were isolated from peripheral blood by plastic adherent ability and flow cytometry analysis. After reaching the confluence, the cells were treated with medium containing Noggin as antagonist of BMP signaling upon 8 days. Real time PCR analysis indicated that the expression of Nestin was diminished in PB-MSCs by attenuating BMP signaling. The obtained results suggested that BMP signaling might have a regulatory function on the Nestin expression in mesenchymal stem cells.  相似文献   
1000.
Mesenchymal stem cells (MSCs) possess an immunoregulatory capacity and are a therapeutic target for many inflammation‐related diseases. However, the detailed mechanisms of MSC‐mediated immunosuppression remain unclear. In this study, we provide new information to partly explain the molecular mechanisms of immunoregulation by MSCs. Specifically, we found that A20 expression was induced in MSCs by inflammatory cytokines. Knockdown of A20 in MSCs resulted in increased proliferation and reduced adipogenesis, and partly reversed the suppressive effect of MSCs on T cell proliferation in vitro and inhibited tumour growth in vivo. Mechanistic studies indicated that knockdown of A20 in MSCs inhibited activation of the p38 mitogen‐activated protein kinase (MAPK) pathway, which potently promoted the production of tumour necrosis factor (TNF)‐α and inhibited the production of interleukin (IL)‐10. Collectively, these data reveal a crucial role of A20 in regulating the immunomodulatory activities of MSCs by controlling the expression of TNF‐α and IL‐10 in an inflammatory environment. These findings provide novel insights into the pathogenesis of various inflammatory‐associated diseases, and are a new reference for the future development of treatments for such afflictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号