首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   39篇
  2024年   2篇
  2023年   3篇
  2022年   7篇
  2021年   18篇
  2020年   17篇
  2019年   15篇
  2018年   17篇
  2017年   18篇
  2016年   18篇
  2015年   30篇
  2014年   23篇
  2013年   29篇
  2012年   32篇
  2011年   31篇
  2010年   13篇
  2009年   7篇
  2008年   14篇
  2007年   5篇
  2006年   13篇
  2005年   11篇
  2004年   16篇
  2003年   7篇
  2002年   10篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1991年   8篇
  1990年   5篇
  1989年   7篇
  1988年   6篇
  1987年   9篇
  1986年   4篇
  1985年   4篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有455条查询结果,搜索用时 15 毫秒
41.
In cells of neural and non-neural origin, tubulin forms a complex with plasma membrane Na+,K+-ATPase, resulting in inhibition of the enzyme activity. When cells are treated with 1 mM L-glutamate, the complex is dissociated and enzyme activity is restored. Now, we found that in CAD cells, ATPase is not activated by L-glutamate and tubulin/ATPase complex is not present in membranes. By investigating the causes for this characteristic, we found that tubulin must be acetylated in order to associate with ATPase and to inhibit its catalytic activity. In CAD cells, the acetylated tubulin isotype is absent. Treatment of CAD cells with deacetylase inhibitors (trichostatin A or tubacin) caused appearance of acetylated tubulin, formation of tubulin/ATPase complex, and reduction of membrane ATPase activity. In these treated cells, addition of 1 mM L-glutamate dissociated the complex and restored the enzyme activity. Cytosolic tubulin from trichostatin A-treated but not from non-treated cells inhibited ATPase activity. These findings indicate that the acetylated isotype of tubulin is required for interaction with membrane Na+,K+-ATPase and consequent inhibition of enzyme activity.  相似文献   
42.
A hidden-state Markov model for cell population deconvolution.   总被引:1,自引:0,他引:1  
Microarrays measure gene expression typically from a mixture of cell populations during different stages of a biological process. However, the specific effects of the distinct or pure populations on measured gene expression are difficult or impossible to determine. The ability to deconvolve measured gene expression into the contributions from pure populations is critical to maximizing the potential of microarray analysis for investigating complex biological processes. In this paper, we describe a novel approach called the multinomial hidden Markov model (MHMM) that produces: (i) a maximum a posteriori estimate of the fraction represented by each pure population and (ii) gene expression values for each pure population. Our method uses an unsupervised, probabilistic approach for handling missing data points and clusters genes based on expression in pure populations. MHMM, used with several yeast datasets, identified statistically significant temporal dynamics. This method, unlike the linear decomposition models used previously for deconvolution, can extract information from different types of data, does not require a priori identification of pure gene expression, exploits the temporal nature of time series data, and is less affected by missing data.  相似文献   
43.
Diallyl trisulfide (DATS), a polysulfide constituent found in garlic oil, is capable of the release of hydrogen sulfide (H(2)S). H(2)S is a known cardioprotective agent that protects the heart via antioxidant, antiapoptotic, anti-inflammatory, and mitochondrial actions. Here, we investigated DATS as a stable donor of H(2)S during myocardial ischemia-reperfusion (MI/R) injury in vivo. We investigated endogenous H(2)S levels, infarct size, postischemic left ventricular function, mitochondrial respiration and coupling, endothelial nitric oxide (NO) synthase (eNOS) activation, and nuclear E2-related factor (Nrf2) translocation after DATS treatment. Mice were anesthetized and subjected to a surgical model of MI/R injury with and without DATS treatment (200 μg/kg). Both circulating and myocardial H(2)S levels were determined using chemiluminescent gas chromatography. Infarct size was measured after 45 min of ischemia and 24 h of reperfusion. Troponin I release was measured at 2, 4, and 24 h after reperfusion. Cardiac function was measured at baseline and 72 h after reperfusion by echocardiography. Cardiac mitochondria were isolated after MI/R, and mitochondrial respiration was investigated. NO metabolites, eNOS phosphorylation, and Nrf2 translocation were determined 30 min and 2 h after DATS administration. Myocardial H(2)S levels markedly decreased after I/R injury but were rescued by DATS treatment (P < 0.05). DATS administration significantly reduced infarct size per area at risk and per left ventricular area compared with control (P < 0.001) as well as circulating troponin I levels at 4 and 24 h (P < 0.05). Myocardial contractile function was significantly better in DATS-treated hearts compared with vehicle treatment (P < 0.05) 72 h after reperfusion. DATS reduced mitochondrial respiration in a concentration-dependent manner and significantly improved mitochondrial coupling after reperfusion (P < 0.01). DATS activated eNOS (P < 0.05) and increased NO metabolites (P < 0.05). DATS did not appear to significantly induce the Nrf2 pathway. Taken together, these data suggest that DATS is a donor of H(2)S that can be used as a cardioprotective agent to treat MI/R injury.  相似文献   
44.
Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delayed osseous maturation, expressive-language deficits, and a distinctive facial appearance. Occurrence is generally sporadic, although parent-to-child transmission has been reported on occasion. Employing whole-exome sequencing, we identified heterozygous truncating mutations in SRCAP in five unrelated individuals with sporadic FHS. Sanger sequencing identified mutations in SRCAP in eight more affected persons. Mutations were de novo in all six instances in which parental DNA was available. SRCAP is an SNF2-related chromatin-remodeling factor that serves as a coactivator for CREB-binding protein (CREBBP, better known as CBP, the major cause of Rubinstein-Taybi syndrome [RTS]). Five SRCAP mutations, two of which are recurrent, were identified; all are tightly clustered within a small (111 codon) region of the final exon. These mutations are predicted to abolish three C-terminal AT-hook DNA-binding motifs while leaving the CBP-binding and ATPase domains intact. Our findings show that SRCAP mutations are the major cause of FHS and offer an explanation for the clinical overlap between FHS and RTS.  相似文献   
45.
Clinical "superbug" isolates of Pseudomonas aeruginosa were previously observed to be resistant to several antibiotics, including polymyxin B, and/or to have a distinct, reproducible adaptive polymyxin resistance phenotype, identified by observing "skipped" wells (appearance of extra turbid wells) during broth microdilution testing. Here we report the complete assembled draft genome sequences of three such polymyxin resistant P. aeruginosa strains (9BR, 19BR, and 213BR).  相似文献   
46.
ABSTRACT: BACKGROUND: Recent studies have shown that fatty acid-binding protein 4 (FABP4) plasma levels are associated with impaired endothelial function in type 2 diabetes (T2D). In this work, we analysed the effect of FABP4 on the insulin-mediated nitric oxide (NO) production by endothelial cells in vitro. METHODS: In human umbilical vascular endothelial cells (HUVECs), we measured the effects of FABP4 on the insulin-mediated endothelial nitric oxide synthase (eNOS) expression and activation and on NO production. We also explored the impact of exogenous FABP4 on the insulin-signalling pathway (insulin receptor substrate 1 (IRS1) and Akt). RESULTS: We found that eNOS expression and activation and NO production are significantly inhibited by exogenous FABP4 in HUVECs. FABP4 induced an alteration of the insulin-mediated eNOS pathway by inhibiting IRS1 and Akt activation. These results suggest that FABP4 induces endothelial dysfunction by inhibiting the activation of the insulin-signalling pathway resulting in decreased eNOS activation and NO production. CONCLUSION: These findings provide a mechanistic linkage between FABP4 and impaired endothelial function in diabetes, which leads to an increased cardiovascular risk.  相似文献   
47.
There are few animal models of dengue infection, especially in immunocompetent mice. Here, we describe alterations found in adult immunocompetent mice inoculated with an adapted Dengue virus (DENV-3) strain. Infection of mice with the adapted DENV-3 caused inoculum-dependent lethality that was preceded by several hematological and biochemical changes and increased virus dissemination, features consistent with severe disease manifestation in humans. IFN-γ expression increased after DENV-3 infection of WT mice and this was preceded by increase in expression of IL-12 and IL-18. In DENV-3-inoculated IFN-γ(-/-) mice, there was enhanced lethality, which was preceded by severe disease manifestation and virus replication. Lack of IFN-γ production was associated with diminished NO-synthase 2 (NOS2) expression and higher susceptibility of NOS2(-/-) mice to DENV-3 infection. Therefore, mechanisms of protection to DENV-3 infection rely on IFN-γ-NOS2-NO-dependent control of viral replication and of disease severity, a pathway showed to be relevant for resistance to DENV infection in other experimental and clinical settings. Thus, the model of DENV-3 infection in immunocompetent mice described here represents a significant advance in animal models of severe dengue disease and may provide an important tool to the elucidation of immunopathogenesis of disease and of protective mechanisms associated with infection.  相似文献   
48.
49.
ABSTRACT: AC Biosusceptometry (ACB) was previously employed towards recording gastrointestinal motility. Our data show a reliable and successful evaluation of gastrointestinal transit of liquid and solid meals in rats, considering the methods scarcity and number of experiments needed to endorsement of drugs and medicinal plants. ACB permits real time and simultaneous experiments using the same animal, preserving the physiological conditions employing both meals with simplicity and accuracy.  相似文献   
50.
Arce CA  Casale CH  Barra HS 《The FEBS journal》2008,275(19):4664-4674
The ATP-hydrolysing enzymes (Na(+),K(+))-, H(+)- and Ca(2+)-ATPase are integral membrane proteins that play important roles in the exchange of ions and nutrients between the exterior and interior of cells, and are involved in signal transduction pathways. Activity of these ATPases is regulated by several specific effectors. Here, we review the regulation of these P-type ATPases by a common effector, acetylated tubulin, which interacts with them and inhibits their enzyme activity. The presence of an acetyl group on Lys40 of alpha-tubulin is a requirement for the interaction. Stimulation of enzyme activity by different effectors involves the dissociation of tubulin/ATPase complexes. In cultured cells, acetylated tubulin associated with ATPase appears to be a constituent of microtubules. Stabilization of microtubules by taxol blocks association/dissociation of the complex. Membrane ATPases may function as anchorage sites for microtubules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号