首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   81篇
  2022年   8篇
  2021年   12篇
  2019年   7篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   12篇
  2014年   14篇
  2013年   19篇
  2012年   31篇
  2011年   31篇
  2010年   15篇
  2009年   16篇
  2008年   21篇
  2007年   21篇
  2006年   17篇
  2005年   16篇
  2004年   15篇
  2003年   17篇
  2002年   12篇
  2001年   18篇
  2000年   25篇
  1999年   18篇
  1998年   18篇
  1997年   8篇
  1995年   12篇
  1994年   10篇
  1993年   7篇
  1992年   9篇
  1991年   8篇
  1990年   8篇
  1989年   13篇
  1988年   19篇
  1987年   7篇
  1986年   14篇
  1985年   20篇
  1984年   19篇
  1983年   21篇
  1982年   13篇
  1981年   15篇
  1979年   12篇
  1977年   15篇
  1976年   10篇
  1975年   17篇
  1974年   8篇
  1973年   7篇
  1972年   20篇
  1971年   13篇
  1969年   11篇
  1968年   14篇
排序方式: 共有790条查询结果,搜索用时 15 毫秒
81.
82.
We have applied a quantitative structure-activity relationship (QSAR) approach to analyze the chemical parameters that determine the relative sensitivity of olfaction and nasal chemesthesis to a common set of volatile organic compounds (VOCs). We used previously reported data on odor detection thresholds (ODTs) and nasal pungency thresholds (NPTs) from 64 VOCs belonging to 7 chemical series (acetate esters, carboxylic acids, alcohols, aliphatic aldehydes, alkylbenzenes, ketones, and terpenes). The analysis tested whether NPTs could be used to separate out "selective" chemosensory effects (i.e., those resting on the transfer of VOCs from the gas phase to the receptor phase) from "specific" chemosensory effects in ODTs. Previous work showed that selective effects overwhelmingly dominate chemesthetic potency whereas both selective and specific effects control olfactory potency. We conclude that it is indeed possible to use NPTs to separate out selective from specific effects in ODTs. Among the series studied, aldehydes and acids, except for formic acid, show clear specific effects in their olfactory potency. Furthermore, for VOCs whose odor potency rests mainly on selective effects, we have developed a QSAR equation that can predict their ODTs based on their NPTs.  相似文献   
83.
84.
Flavobacterium psychrophilum causes bacterial cold-water disease in multiple fish species, including salmonids. An autochthonous Enterobacter strain (C6-6) inhibits the in vitro growth of F. psychrophilum, and when ingested as a putative probiotic, it provides protection against injection challenge with F. psychrophilum in rainbow trout. In this study, low-molecular-mass (≤3 kDa) fractions from both Enterobacter C6-6 and Escherichia coli K-12 culture supernatants inhibited the growth of F. psychrophilum. The ≤3-kDa fraction from Enterobacter C6-6 was analyzed by SDS-PAGE, and subsequent tandem mass spectroscopy identified EcnB, which is a small membrane lipoprotein that is a putative pore-forming toxin. Agar plate diffusion assays demonstrated that ecnAB knockout strains of both Enterobacter C6-6 and E. coli K-12 no longer inhibited F. psychrophilum (P < 0.001), while ecnAB-complemented knockout strains recovered the inhibitory phenotype (P < 0.001). In fish experiments, the engineered strains (C6-6 ΔecnAB and C6-6 ΔecnAB<pET101::ecnAB>) and the wild-type strain (C6-6) were added to the fish diet every day for 38 days. On day 11, the fish were challenged by injection with a virulent strain of F. psychrophilum (CSF 259-93). Fish that were fed C6-6 had significantly longer survival than fish fed the ecnAB knockout strain (P < 0.0001), while fish fed the complemented knockout strain recovered the probiotic phenotype (P = 0.61). This entericidin is responsible for the probiotic activity of Enterobacter C6-6, and it may present new opportunities for therapeutic and prophylactic treatments against similarly susceptible pathogens.  相似文献   
85.
Voltage-gated calcium channels are a family of integral membrane calcium-selective proteins found in all excitable and many nonexcitable cells. Calcium influx affects membrane electrical properties by depolarizing cells and generally increasing excitability. Calcium entry further regulates multiple intracellular signaling pathways as well as the biochemical factors that mediate physiological functions such as neurotransmitter release and muscle contraction. Small changes in the biophysical properties or expression of calcium channels can result in pathophysiological changes leading to serious chronic disorders. In humans, mutations in calcium channel genes have been linked to a number of serious neurological, retinal, cardiac, and muscular disorders.  相似文献   
86.
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by expansion of a polyglutamine tract in the huntingtin protein (htt) that mediates formation of intracellular protein aggregates. In the brains of HD patients and HD transgenic mice, accumulation of protein aggregates has been causally linked to lesions in axo-dendritic and synaptic compartments. Here we show that dendritic spines - sites of synaptogenesis - are lost in the proximity of htt aggregates because of functional defects in local endosomal recycling mediated by the Rab11 protein. Impaired exit from recycling endosomes (RE) and association of endocytosed protein with intracellular structures containing htt aggregates was demonstrated in cultured hippocampal neurons cells expressing a mutant htt fragment. Dendrites in hippocampal neurons became dystrophic around enlarged amphisome-like structures positive for Rab11, LC3 and mutant htt aggregates. Furthermore, Rab11 overexpression rescues neurodegeneration and dramatically extends lifespan in a Drosophila model of HD. Our findings are consistent with the model that mutant htt aggregation increases local autophagic activity, thereby sequestering Rab11 and diverting spine-forming cargo from RE into enlarged amphisomes. This mechanism may contribute to the toxicity caused by protein misfolding found in a number of neurodegenerative diseases.  相似文献   
87.
Listeria monocytogenes is the causative agent of listeriosis, a severe foodborne infection. These bacteria live as soil saprotrophs on decaying plant matter but also as intracellular parasites, using the cell cytosol as a replication niche. PrfA, a regulatory protein, integrates a number of environmental cues that signal the transition between these two contrasting lifestyles, activating a set of key virulence factors during host infection. While a number of details concerning the general mode of action of this virulence master switch have been elucidated, others remain unsolved. Recent work has revealed additional mechanisms that contribute to L. monocytogenes virulence modulation, often via cross-talk with PrfA, or by regulating new genes involved in host colonization.  相似文献   
88.
We explored the influence of methodological and chemical parameters on the detection of nasal chemesthesis (i.e., trigeminal stimulation) evoked by volatile organic compounds (VOCs). To avoid odor biases, chemesthesis was probed via nasal pungency detection in anosmics and via nasal localization (i.e., lateralization) in normosmics, in both cases using forced-choice procedures. In the experiments with anosmics, 12 neat VOCs were selected based on previous reports of lack of chemesthetic response. Although none of the VOCs reached 100% detection, detectability and confidence of detection were higher when using a glass vessel system adapted with nosepieces to fit the nostrils tightly than when using wide-mouth glass jars. Half the stimuli were detected well above chance and half were not. When the latter were tested again after being heated to 37 degrees C, that is, body temperature (from room temperature, 23 degrees C), to increase their vapor concentration, only one, octane, significantly increased its detectability. Chemesthesis gauged with normosmics mirrored that with anosmics. Gas chromatography measurements showed that, even at 23 degrees C, the saturated vapor concentrations of the undetected stimuli, except vanillin, were well above the respective calculated nasal pungency threshold (NPT) from an equation that, in the past, had accurately described and predicted NPTs. We conclude that, except for octane and perhaps vanillin, the failure of the other four VOCs to precipitate nasal chemesthesis rests on a chemical-structural limitation, for example, the molecules lack a key property to fit a receptor pocket, rather than on a concentration limitation, for example, the vapor concentration is too low to reach a threshold value.  相似文献   
89.
The C terminus is responsible for all of the agonist activity of C5a at human C5a receptors (C5aRs). In this report we have mapped the ligand binding site on the C5aR using a series of agonist and antagonist peptide mimics of the C terminus of C5a as well as receptors mutated at putative interaction sites (Ile(116), Arg(175,) Arg(206), Glu(199), Asp(282), and Val(286)). Agonist peptide 1 (Phe-Lys-Pro-d-cyclohexylalanine-cyclohexylalanine-d-Arg) can be converted to an antagonist by substituting the bulkier Trp for cyclohexylalanine at position 5 (peptide 2). Conversely, mutation of C5aR transmembrane residue Ile(116) to the smaller Ala (I116A) makes the receptor respond to peptide 2 as an agonist (Gerber, B. O., Meng, E. C., Dotsch, V., Baranski, T. J., and Bourne, H. R. (2001) J. Biol. Chem. 276, 3394-3400). However, a potent cyclic hexapeptide antagonist, Phe-cyclo-[Orn-Pro-d-cyclohexylalanine-Trp-Arg] (peptide 3), derived from peptide 2 and which binds to the same receptor site, remains a full antagonist at I116AC5aR. This suggests that although the residue at position 5 might bind near to Ile(116), the latter is not essential for either activation or antagonism. Arg(206) and Arg(175) both appear to interact with the C-terminal carboxylate of C5a agonist peptides, suggesting a dynamic binding mechanism that may be a part of a receptor activation switch. Asp(282) has been previously shown to interact with the side chain of the C-terminal Arg residue, and Glu(199) may also interact with this side chain in both C5a and peptide mimics. Using these interactions to orient NMR-derived ligand structures in the binding site of C5aR, a new model of the interaction between peptide antagonists and the C5aR is presented.  相似文献   
90.
Prohormone convertase (PC1) is found in endocrine cell lines that express cholecystokinin (CCK) mRNA and process pro CCK to biologically active products. Other studies have demonstrated that PC1 may be a one of the enzymes responsible for the endoproteolytic cleavages that occur in pro CCK during its biosynthesis and processing. Prohormone convertase 1 (PC1) has a distribution that is similar to cholecystokinin (CCK) in rat brain. A moderate to high percentage of CCK mRNA-positive neurons express PC1 mRNA. CCK levels were measured in PC1 knockout and control mice to assess the degree to which loss of PC1 changed CCK content. CCK levels were decreased 62% in hippocampus, 53% in amygdala and 57% in pons-medulla in PC1 knockout mice as compared to controls. These results are highly correlated with the colocalization of CCK and PC1. The majority of CCK mRNA-positive neurons in the pyramidal cell layer of the hippocampus express PC1 mRNA and greater than 50% of CCK mRNA-positive neurons in several nuclei of the amygdala also express PC1. These results demonstrate that PC1 is important for CCK processing. PC2 and PC5 are also widely colocalized with CCK. It may be that PC2, PC5 or another non-PC enzyme are able to substitute for PC1 and sustain production of some amidated CCK. Together these enzymes may represent a redundant system to insure the production of CCK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号