首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8255篇
  免费   656篇
  国内免费   598篇
  9509篇
  2024年   16篇
  2023年   104篇
  2022年   266篇
  2021年   434篇
  2020年   306篇
  2019年   346篇
  2018年   370篇
  2017年   251篇
  2016年   356篇
  2015年   503篇
  2014年   570篇
  2013年   600篇
  2012年   759篇
  2011年   633篇
  2010年   384篇
  2009年   369篇
  2008年   408篇
  2007年   378篇
  2006年   347篇
  2005年   276篇
  2004年   237篇
  2003年   202篇
  2002年   175篇
  2001年   142篇
  2000年   114篇
  1999年   133篇
  1998年   79篇
  1997年   89篇
  1996年   80篇
  1995年   74篇
  1994年   85篇
  1993年   60篇
  1992年   73篇
  1991年   69篇
  1990年   60篇
  1989年   33篇
  1988年   36篇
  1987年   25篇
  1986年   19篇
  1985年   23篇
  1984年   9篇
  1983年   11篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有9509条查询结果,搜索用时 0 毫秒
91.
Ethylene and jasmonate (JA) have powerful effects when plants are challenged by pathogens. The inducible promoter‐regulated expression of the Arabidopsis ethylene receptor mutant ethylene‐insensitive1‐1 (etr1‐1) causes ethylene insensitivity in petunia. To investigate the molecular mechanisms involved in transgenic petunia responses to Botrytis cinerea related to the ethylene and JA pathways, etr1‐1‐expressing petunia plants were inoculated with Botrytis cinerea. The induced expression of etr1‐1 by a chemical inducer dexamethasone resulted in retarded senescence and reduced disease symptoms on detached leaves and flowers or intact plants. The extent of decreased disease symptoms correlated positively with etr1‐1 expression. The JA pathway, independent of the ethylene pathway, activated petunia ethylene response factor (PhERF) expression and consequent defence‐related gene expression. These results demonstrate that ethylene induced by biotic stress influences senescence, and that JA in combination with delayed senescence by etr1‐1 expression alters tolerance to pathogens.  相似文献   
92.

Background

Long non-coding RNAs (lncRNAs) are an important class of pervasive genes involved in a variety of biological functions. They are aberrantly expressed in many types of diseases. In this study, we aimed to investigate the lncRNA profiles in preeclampsia. Preeclampsia has been observed in patients with molar pregnancy where a fetus is absent, which demonstrate that the placenta is sufficient to cause this condition. Thus, we analyzed the lncRNA profiles in preeclampsia placentas.

Methodology/Principal Findings

In this study, we described the lncRNA profiles in six preeclampsia placentas (T) and five normal pregnancy placentas (N) using microarray. With abundant and varied probes accounting for 33,045 LncRNAs in our microarray, 28,443 lncRNAs that were expressed at a specific level were detected. From the data, we found 738 lncRNAs that were differentially expressed (≥1.5-fold-change) among preeclampsia placentas compared with controls. Coding-non-coding gene co-expression networks (CNC network) were constructed based on the correlation analysis between the differentially expressed lncRNAs and mRNAs. According to the CNC network and GO analysis of differentially expressed lncRNAs/mRNAs, we selected three lncRNAs to analyze the relationship between lncRNAs and preeclampsia. LOC391533, LOC284100, and CEACAMP8 were evaluated using qPCR in 40 preeclampsia placentas and 40 controls. These results revealed that three lncRNAs were aberrantly expressed in preeclampsia placentas compared with controls.

Conclusions/Significance

Our study is the first study to determine the genome-wide lncRNAs expression patterns in preeclampsia placenta using microarray. These results revealed that clusters of lncRNAs were aberrantly expressed in preeclampsia placenta compared with controls, which indicated that lncRNAs differentially expressed in preeclampsia placenta might play a partial or key role in preeclampsia development. Misregulation of LOC391533, LOC284100, and CEACAMP8 might contribute to the mechanism underlying preeclampsia. Taken together, this study may provide potential targets for the future treatment of preeclampsia and novel insights into preeclampsia biology.  相似文献   
93.
Whi3 is an RNA binding protein known to bind the mRNA of the yeast G1 cyclin gene CLN3. It inhibits CLN3 function, but the mechanism of this inhibition is unclear; in previous studies, Whi3 made no observable difference to CLN3 mRNA levels, translation, or protein abundance. Here, we re-approach this issue using microarrays, RNA-Seq, ribosome profiling, and other methods. By multiple methods, we find that the whi3 mutation causes a small but consistent increase in the abundance of hundreds of mRNAs, including the CLN3 mRNA. The effect on various mRNAs is roughly in proportion to the density of GCAU or UGCAU motifs carried by these mRNAs, which may be a binding site for Whi3. mRNA instability of Whi3 targets may in part depend on a 3′ AU rich element (ARE), AUUUUA. In addition, the whi3 mutation causes a small increase in the translational efficiency of CLN3 mRNA. The increase in CLN3 mRNA half-life and abundance together with the increase in translational efficiency is fully sufficient to explain the small-cell phenotype of whi3 mutants. Under stress conditions, Whi3 becomes a component of P-bodies or stress granules, but Whi3 also acts under non-stress condition, when no P-bodies are visible. We suggest that Whi3 may be a very broadly-acting, but mild, modulator of mRNA stability. In CLN3, Whi3 may bind to the 3′ GCAU motifs to attract the Ccr4-Not complex to promote RNA deadenylation and turnover, and Whi3 may bind to the 5′ GCAU motifs to inhibit translation.  相似文献   
94.
Recent studies point to an association between the late-onset sporadic Parkinson’s disease (PD) and single nucleotide polymorphisms (SNPs) rs1559085 and rs27852 in Ca2+-dependent protease calpain inhibitor calpastatin (CAST) gene. This finding is of interest since loss of CAST activity could result in over activated calpain, potentially leading to Ca2+ dysregulation and loss of substantia nigra neurons in PD. We explored the association between CAST SNPs and late-onset sporadic PD in the Han Chinese population. The study included 615 evaluable patients (363 male, 252 female) with PD and 636 neurologically healthy controls (380 male, 256 female) matched for age, gender, ethnicity, and area of residence. PD cases were identified from the PD cohort of the Chinese National Consortium on Neurodegenerative Diseases (www.chinapd.cn). A total of 24 tag-SNPs were genotyped capturing 95% of the genetic variation across the CAST gene. There was no association found between any of the polymorphisms and PD in all models tested (co-dominant, dominant-effect and recessive-effect). Similarly, none of the common haplotypes was associated with a risk for PD. Our data do not support a significant association between the CAST gene polymorphisms and late onset sporadic PD in the Han Chinese population.  相似文献   
95.
96.

Background

The Aerides–Vanda alliance is a complex group in the subtribe Aeridinae (subfamily Epidendroideae, Orchidaceae). Some phylogenetic systems of this alliance have been previously proposed based on molecular and morphological analyses. However, several taxonomic problems within this alliance as well as between it and its allies remain unsolved.

Methodology/Principal Findings

We utilized ITS and five plastid DNA regions in this phylogenetic analysis. Consensus trees strongly indicate that the Aerides–Vanda alliance is monophyletic, and the 14 genera of this alliance can be grouped into the following clades with 14 subclades: 1. Aerides, comprising two subclades: Rhynchostylis and Aerides; 2. Ascocentropsis; 3. Papilionanthe; 4. Vanda, comprising five subclades: Neofinetia, Christensonia, Seidenfadenia, Ascocentrum, and Vanda–Trudelia, in which Vanda and Trudelia form a subclade; 5. Tsiorchis, comprising three subclades: Chenorchis, Tsiorchis, and two species of Ascocentrum; 6. Paraholcoglossum; and 7. Holcoglossum. Among the 14 genera, only Ascocentrum is triphyletic: two species of the Ascocentrum subclade, an independent subclade Ascocentrum subclade in the Tsiorchis clade; the Ascocentrum subclade in the Vanda clade; and one species in the Holcoglossum clade. The Vanda and Trudelia species belong to the same subclade. The molecular conclusion is consistent with their morphological characteristics.

Conclusions

We elucidate the relationship among the 14 genera of the Aerides–Vanda alliance. Our phylogenetic results reveal that the Aerides–Vanda alliance is monophyletic, but it can be divided into 14 genera. The data prove that Ascocentrum is triphyletic. Plants with elongate-terete leaves and small flowers should be treated as a new genus, Pendulorchis. Saccolabium himalaicum (Ascocentrum himalaicum) should be transferred to Pendulorchis. Ascocentrum pumilum, endemic to Taiwan, should be transferred to Holcoglossum. A new combination, Holcoglossum pumilum, was also established. Trudelia should not be recognized as an independent genus. Two new species, Pendulorchis gaoligongensis and Holcoglossum singchianum, were described as well.  相似文献   
97.
Most of pyruvoyl-dependent proteins observed in prokaryotes and eukaryotes are critical regulatory enzymes, which are primary targets of inhibitors for anti-cancer and anti-parasitic therapy. These proteins undergo an autocatalytic, intramolecular self-cleavage reaction in which a covalently bound pyruvoyl group is generated on a conserved serine residue. Traditional detections of the modified serine sites are performed by experimental approaches, which are often labor-intensive and time-consuming. In this study, we initiated in an attempt for the computational predictions of such serine sites with Feature Selection based on a Random Forest. Since only a small number of experimentally verified pyruvoyl-modified proteins are collected in the protein database at its current version, we only used a small dataset in this study. After removing proteins with sequence identities >60%, a non-redundant dataset was generated and was used, which contained only 46 proteins, with one pyruvoyl serine site for each protein. Several types of features were considered in our method including PSSM conservation scores, disorders, secondary structures, solvent accessibilities, amino acid factors and amino acid occurrence frequencies. As a result, a pretty good performance was achieved in our dataset. The best 100.00% accuracy and 1.0000 MCC value were obtained from the training dataset, and 93.75% accuracy and 0.8441 MCC value from the testing dataset. The optimal feature set contained 9 features. Analysis of the optimal feature set indicated the important roles of some specific features in determining the pyruvoyl-group-serine sites, which were consistent with several results of earlier experimental studies. These selected features may shed some light on the in-depth understanding of the mechanism of the post-translational self-maturation process, providing guidelines for experimental validation. Future work should be made as more pyruvoyl-modified proteins are found and the method should be evaluated on larger datasets. At last, the predicting software can be downloaded from http://www.nkbiox.com/sub/pyrupred/index.html.  相似文献   
98.
MgADP inhibition, which is considered as a part of the regulatory system of ATP synthase, is a well-known process common to all F1-ATPases, a soluble component of ATP synthase. The entrapment of inhibitory MgADP at catalytic sites terminates catalysis. Regulation by the ε subunit is a common mechanism among F1-ATPases from bacteria and plants. The relationship between these two forms of regulatory mechanisms is obscure because it is difficult to distinguish which is active at a particular moment. Here, using F1-ATPase from Bacillus subtilis (BF1), which is strongly affected by MgADP inhibition, we can distinguish MgADP inhibition from regulation by the ε subunit. The ε subunit did not inhibit but activated BF1. We conclude that the ε subunit relieves BF1 from MgADP inhibition.  相似文献   
99.
100.
Relationships between xylem anatomical traits and cavitation resistance have always been a major content of plant hydraulics. To know how plants cope with drought, it is extremely important to acquire detailed knowledge about xylem anatomical traits and assess the cavitation resistance accurately. This study aims to increase our knowledge in the methods determining cavitation resistance and xylem anatomical traits. We selected a semi-ring-porous species, Hippophae rhamnoides L., and a diffuse-porous species, Corylus heterophylla F., to clarify the reasons for the difference in cavitation resistance based on detailed xylem anatomical traits and reliable vulnerability curves (VCs). Both Cavitron and bench dehydration (BD) were used to construct VCs. Xylem anatomical traits, including pit membrane ultrastructure of these two species, were determined. The VCs obtained by the two different techniques were of different types for H. rhamnoides, its Cavitron VCs might be unreliable because of open-vessel artifacts. On the basis of BD VCs, H. rhamnoides showed higher cavitation resistance than C. heterophylla, and this is attributed to its low vessel connectivity as well as non-porous and thicker pit membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号